Cheng Erkang, Chen Jinwu, Yang Jie, Deng Huiyang, Wu Yi, Megalooikonomou Vasileios, Gable Bryce, Ling Haibin
Center for Data Analytics & Biomedical Informatics, Computer & Information Science Department, Temple University, Philadelphia, PA 19122, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6204-7. doi: 10.1109/IEMBS.2011.6091532.
Orthodontic craniometric landmarks provide critical information in oral and maxillofacial imaging diagnosis and treatment planning. The Dent-landmark, defined as the odontoid process of the epistropheus, is one of the key landmarks to construct the midsagittal reference plane. In this paper, we propose a learning-based approach to automatically detect the Dent-landmark in the 3D cone-beam computed tomography (CBCT) dental data. Specifically, a detector is learned using the random forest with sampled context features. Furthermore, we use spacial prior to build a constrained search space other than use the full three dimensional space. The proposed method has been evaluated on a dataset containing 73 CBCT dental volumes and yields promising results.
正畸颅骨测量标志点在口腔颌面影像诊断和治疗计划中提供关键信息。齿突标志点,定义为枢椎的齿突,是构建矢状面参考平面的关键标志点之一。在本文中,我们提出一种基于学习的方法,用于在三维锥形束计算机断层扫描(CBCT)牙科数据中自动检测齿突标志点。具体而言,使用带有采样上下文特征的随机森林来学习一个检测器。此外,我们使用空间先验来构建一个受限搜索空间,而不是使用完整的三维空间。所提出的方法已在包含73个CBCT牙科容积的数据集上进行了评估,并取得了有希望的结果。