Suppr超能文献

虚拟地标

Virtual Landmarks.

作者信息

Tong Yubing, Udupa Jayaram K, Odhner Dewey, Bai Peirui, Torigian Drew A

机构信息

Medical Image Processing Group, 602 Goddard building, 3710 Hamilton Walk, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 United States.

出版信息

Proc SPIE Int Soc Opt Eng. 2017 Feb;10135. doi: 10.1117/12.2254855. Epub 2017 Mar 3.

Abstract

Much has been published on finding landmarks object surfaces in the context of shape modeling. While this is still an open problem, many of the challenges of past approaches can be overcome by removing the restriction that landmarks on the object surface. The we propose may reside inside, on the boundary of, or outside the object and are tethered to the object. Our solution is straightforward, simple, and recursive in nature, proceeding from global features initially to local features in later levels to detect landmarks. Principal component analysis (PCA) is used as an engine to recursively subdivide the object region. The object itself may be represented in binary or fuzzy form or with gray values. The method is illustrated in 3D space (although it generalizes readily to spaces of any dimensionality) on four objects (liver, trachea and bronchi, and outer boundaries of left and right lungs along pleura) derived from 5 patient computed tomography (CT) image data sets of the thorax and abdomen. The virtual landmark identification approach seems to work well on different structures in different subjects and seems to detect landmarks that are homologously located in different samples of the same object. The approach guarantees that virtual landmarks are invariant to translation, scaling, and rotation of the object/image. Landmarking techniques are fundamental for many computer vision and image processing applications, and we are currently exploring the use virtual landmarks in automatic anatomy recognition and object analytics.

摘要

关于在形状建模的背景下寻找地标(物体表面)已经有很多文献发表。虽然这仍然是一个未解决的问题,但过去方法中的许多挑战可以通过去除地标必须在物体表面的限制来克服。我们提出的地标可能位于物体内部、边界或外部,并与物体相连。我们的解决方案本质上是直接、简单且递归的,从最初的全局特征到后期层次的局部特征来检测地标。主成分分析(PCA)被用作递归细分物体区域的引擎。物体本身可以用二进制、模糊形式或灰度值表示。该方法在三维空间(尽管它很容易推广到任何维度的空间)中,对从5名患者的胸部和腹部计算机断层扫描(CT)图像数据集中提取的四个物体(肝脏、气管和支气管,以及沿胸膜的左右肺的外边界)进行了说明。虚拟地标识别方法似乎在不同受试者的不同结构上都能很好地工作,并且似乎能检测到在同一物体的不同样本中同源定位的地标。该方法保证虚拟地标对于物体/图像的平移、缩放和旋转是不变的。地标技术对于许多计算机视觉和图像处理应用来说是基础,并且我们目前正在探索在自动解剖识别和物体分析中使用虚拟地标。

相似文献

1
Virtual Landmarks.虚拟地标
Proc SPIE Int Soc Opt Eng. 2017 Feb;10135. doi: 10.1117/12.2254855. Epub 2017 Mar 3.
3
Automatic thoracic body region localization.自动胸部区域定位。
Proc SPIE Int Soc Opt Eng. 2017 Feb;10134. doi: 10.1117/12.2254862. Epub 2017 Mar 3.

本文引用的文献

1
Automatic thoracic body region localization.自动胸部区域定位。
Proc SPIE Int Soc Opt Eng. 2017 Feb;10134. doi: 10.1117/12.2254862. Epub 2017 Mar 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验