Suppr超能文献

通过单核苷酸多态性(SNP)和基因表达微阵列的整合网络分析进行表型预测。

Phenotype prediction by integrative network analysis of SNP and gene expression microarrays.

作者信息

Chang Hsun-Hsien, McGeachie Michael

机构信息

Children’s Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6849-52. doi: 10.1109/IEMBS.2011.6091689.

Abstract

A long-term goal of biomedical research is to decipher how genetic processes influence disease formation. Ubiquitous and advancing microarray technology can measure millions of DNA structural variants (single-nucleotide polymorphisms, or SNPs) and thousands of gene transcripts (RNA expression microarrays) in cells. Both of these information modalities can be brought to bear on disease etiology. This paper develops a Bayesian network-based approach to integrate SNP and expression microarray data. The network models SNP-gene interactions using a phenotype-centric network. Inferring the network consists of two steps: variable selection and network learning. The learned network illustrates how functionally dependent SNPs and genes influence each other, and also serves as a predictor of the phenotype. The application of the proposed method to a pediatric acute lymphoblastic leukemia dataset demonstrates the feasibility of our approach and its impact on biological investigation and clinical practice.

摘要

生物医学研究的一个长期目标是破解遗传过程如何影响疾病形成。无处不在且不断发展的微阵列技术能够测量细胞中数百万个DNA结构变异(单核苷酸多态性,即SNP)以及数千个基因转录本(RNA表达微阵列)。这两种信息模式都可用于疾病病因研究。本文开发了一种基于贝叶斯网络的方法来整合SNP和表达微阵列数据。该网络使用以表型为中心的网络对SNP-基因相互作用进行建模。推断网络包括两个步骤:变量选择和网络学习。所学习到的网络展示了功能上相关的SNP和基因如何相互影响,并且还可作为表型的预测指标。将所提出的方法应用于小儿急性淋巴细胞白血病数据集,证明了我们方法的可行性及其对生物学研究和临床实践的影响。

相似文献

1
Phenotype prediction by integrative network analysis of SNP and gene expression microarrays.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6849-52. doi: 10.1109/IEMBS.2011.6091689.
2
A sub-space greedy search method for efficient Bayesian Network inference.
Comput Biol Med. 2011 Sep;41(9):763-70. doi: 10.1016/j.compbiomed.2011.06.012. Epub 2011 Jul 8.
3
Gene expression in large pedigrees: analytic approaches.
BMC Genet. 2016 Feb 3;17 Suppl 2(Suppl 2):3. doi: 10.1186/s12863-015-0311-z.
4
Bayesian error-in-variable survival model for the analysis of GeneChip arrays.
Biometrics. 2005 Jun;61(2):488-97. doi: 10.1111/j.1541-0420.2005.00313.x.
6
A multi-array multi-SNP genotyping algorithm for Affymetrix SNP microarrays.
Bioinformatics. 2007 Jun 15;23(12):1459-67. doi: 10.1093/bioinformatics/btm131. Epub 2007 Apr 25.
7
SNiPer-HD: improved genotype calling accuracy by an expectation-maximization algorithm for high-density SNP arrays.
Bioinformatics. 2007 Jan 1;23(1):57-63. doi: 10.1093/bioinformatics/btl536. Epub 2006 Oct 24.
8
Inferring gene transcriptional modulatory relations: a genetical genomics approach.
Hum Mol Genet. 2005 May 1;14(9):1119-25. doi: 10.1093/hmg/ddi124. Epub 2005 Mar 16.

引用本文的文献

1
Transcriptomic prediction of breeding values in loblolly pine.
PLoS One. 2025 Apr 23;20(4):e0319425. doi: 10.1371/journal.pone.0319425. eCollection 2025.
2
Cancer Risk Score Prediction Based on a Single-Nucleotide Polymorphism Network.
Healthc Inform Res. 2022 Jul;28(3):247-255. doi: 10.4258/hir.2022.28.3.247. Epub 2022 Jul 31.
4
Multiple quantitative trait analysis using bayesian networks.
Genetics. 2014 Sep;198(1):129-37. doi: 10.1534/genetics.114.165704.
5
Integrating multi-omics for uncovering the architecture of cross-talking pathways in breast cancer.
PLoS One. 2014 Aug 19;9(8):e104282. doi: 10.1371/journal.pone.0104282. eCollection 2014.
6
CGBayesNets: conditional Gaussian Bayesian network learning and inference with mixed discrete and continuous data.
PLoS Comput Biol. 2014 Jun 12;10(6):e1003676. doi: 10.1371/journal.pcbi.1003676. eCollection 2014 Jun.
7
Modular network construction using eQTL data: an analysis of computational costs and benefits.
Front Genet. 2014 Feb 26;5:40. doi: 10.3389/fgene.2014.00040. eCollection 2014.
8
Metabolomic derangements are associated with mortality in critically ill adult patients.
PLoS One. 2014 Jan 30;9(1):e87538. doi: 10.1371/journal.pone.0087538. eCollection 2014.

本文引用的文献

1
Mapping transcription mechanisms from multimodal genomic data.
BMC Bioinformatics. 2010 Oct 28;11 Suppl 9(Suppl 9):S2. doi: 10.1186/1471-2105-11-S9-S2.
2
A transcriptional network signature characterizes lung cancer subtypes.
Cancer. 2011 Jan 15;117(2):353-60. doi: 10.1002/cncr.25592. Epub 2010 Sep 13.
3
Genomewide association studies and assessment of the risk of disease.
N Engl J Med. 2010 Jul 8;363(2):166-76. doi: 10.1056/NEJMra0905980.
5
Transcriptional network classifiers.
BMC Bioinformatics. 2009 Sep 17;10 Suppl 9(Suppl 9):S1. doi: 10.1186/1471-2105-10-S9-S1.
6
The genetics of quantitative traits: challenges and prospects.
Nat Rev Genet. 2009 Aug;10(8):565-77. doi: 10.1038/nrg2612.
7
Using gene expression to investigate the genetic basis of complex disorders.
Hum Mol Genet. 2008 Oct 15;17(R2):R129-34. doi: 10.1093/hmg/ddn285.
9
t(6;14)(p22;q32): a new recurrent IGH@ translocation involving ID4 in B-cell precursor acute lymphoblastic leukemia (BCP-ALL).
Blood. 2008 Jan 1;111(1):387-91. doi: 10.1182/blood-2007-07-092015. Epub 2007 Oct 16.
10
Inferring gene regulatory networks from temporal expression profiles under time-delay and noise.
Comput Biol Chem. 2007 Aug;31(4):239-45. doi: 10.1016/j.compbiolchem.2007.03.013. Epub 2007 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验