Chang Hsun-Hsien, McGeachie Michael
Children’s Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6849-52. doi: 10.1109/IEMBS.2011.6091689.
A long-term goal of biomedical research is to decipher how genetic processes influence disease formation. Ubiquitous and advancing microarray technology can measure millions of DNA structural variants (single-nucleotide polymorphisms, or SNPs) and thousands of gene transcripts (RNA expression microarrays) in cells. Both of these information modalities can be brought to bear on disease etiology. This paper develops a Bayesian network-based approach to integrate SNP and expression microarray data. The network models SNP-gene interactions using a phenotype-centric network. Inferring the network consists of two steps: variable selection and network learning. The learned network illustrates how functionally dependent SNPs and genes influence each other, and also serves as a predictor of the phenotype. The application of the proposed method to a pediatric acute lymphoblastic leukemia dataset demonstrates the feasibility of our approach and its impact on biological investigation and clinical practice.
生物医学研究的一个长期目标是破解遗传过程如何影响疾病形成。无处不在且不断发展的微阵列技术能够测量细胞中数百万个DNA结构变异(单核苷酸多态性,即SNP)以及数千个基因转录本(RNA表达微阵列)。这两种信息模式都可用于疾病病因研究。本文开发了一种基于贝叶斯网络的方法来整合SNP和表达微阵列数据。该网络使用以表型为中心的网络对SNP-基因相互作用进行建模。推断网络包括两个步骤:变量选择和网络学习。所学习到的网络展示了功能上相关的SNP和基因如何相互影响,并且还可作为表型的预测指标。将所提出的方法应用于小儿急性淋巴细胞白血病数据集,证明了我们方法的可行性及其对生物学研究和临床实践的影响。