Suppr超能文献

基于离子-神经形态的尖峰时间依赖型突触可塑性实现

Iono-neuromorphic implementation of spike-timing-dependent synaptic plasticity.

作者信息

Meng Yicong, Zhou Kuan, Monzon Joshua J C, Poon Chi-Sang

机构信息

Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7274-7. doi: 10.1109/IEMBS.2011.6091838.

Abstract

Spike-timing-dependent plasticity (STDP) is the ability of a synapse to increase or decrease its efficacy in response to specific temporal pairing of pre- and post-synaptic activities. It is widely believed that such activity-dependent long-term changes in synaptic connection strength underlie the brain's capacity of learning and memory. However, current phenomenological models of STDP fail to reproduce classical forms of synaptic plasticity that are based on stimulus frequency (BCM rule) instead of timing (STDP rule). In this paper, we implemented a novel biophysical synaptic plasticity model by using analog VLSI (aVLSI) circuits biased in the subthreshold regime. We show that the aVLSI synapse model successfully emulates both the STDP and BCM forms of synaptic plasticity as predicted by the biophysical model.

摘要

尖峰时间依赖性可塑性(STDP)是指突触根据突触前和突触后活动的特定时间配对来增强或降低其效能的能力。人们普遍认为,突触连接强度的这种活动依赖性长期变化是大脑学习和记忆能力的基础。然而,当前的STDP现象学模型无法再现基于刺激频率(BCM规则)而非时间(STDP规则)的经典突触可塑性形式。在本文中,我们使用亚阈值状态偏置的模拟超大规模集成电路(aVLSI)电路实现了一种新型生物物理突触可塑性模型。我们表明,aVLSI突触模型成功地模拟了生物物理模型所预测的STDP和BCM形式的突触可塑性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验