Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):E1266-74. doi: 10.1073/pnas.1106161108. Epub 2011 Nov 16.
Current advances in neuromorphic engineering have made it possible to emulate complex neuronal ion channel and intracellular ionic dynamics in real time using highly compact and power-efficient complementary metal-oxide-semiconductor (CMOS) analog very-large-scale-integrated circuit technology. Recently, there has been growing interest in the neuromorphic emulation of the spike-timing-dependent plasticity (STDP) Hebbian learning rule by phenomenological modeling using CMOS, memristor or other analog devices. Here, we propose a CMOS circuit implementation of a biophysically grounded neuromorphic (iono-neuromorphic) model of synaptic plasticity that is capable of capturing both the spike rate-dependent plasticity (SRDP, of the Bienenstock-Cooper-Munro or BCM type) and STDP rules. The iono-neuromorphic model reproduces bidirectional synaptic changes with NMDA receptor-dependent and intracellular calcium-mediated long-term potentiation or long-term depression assuming retrograde endocannabinoid signaling as a second coincidence detector. Changes in excitatory or inhibitory synaptic weights are registered and stored in a nonvolatile and compact digital format analogous to the discrete insertion and removal of AMPA or GABA receptor channels. The versatile Hebbian synapse device is applicable to a variety of neuroprosthesis, brain-machine interface, neurorobotics, neuromimetic computation, machine learning, and neural-inspired adaptive control problems.
目前,神经形态工程的进展使得使用高度紧凑和节能的互补金属氧化物半导体 (CMOS) 模拟超大规模集成电路技术实时模拟复杂的神经元离子通道和细胞内离子动力学成为可能。最近,人们对使用 CMOS、忆阻器或其他模拟器件通过现象学建模来模拟尖峰时间依赖性可塑性 (STDP)Hebbian 学习规则的神经形态模拟越来越感兴趣。在这里,我们提出了一种基于生物物理的神经形态 (离子神经形态) 突触可塑性模型的 CMOS 电路实现,该模型能够同时捕捉尖峰率依赖性可塑性 (Bienenstock-Cooper-Munro 或 BCM 型的 SRDP) 和 STDP 规则。离子神经形态模型通过假设逆行内源性大麻素信号作为第二个符合检测器,再现了具有 NMDA 受体依赖性和细胞内钙介导的长时程增强或长时程抑制的双向突触变化。兴奋性或抑制性突触权重的变化以类似于 AMPA 或 GABA 受体通道离散插入和去除的非易失性和紧凑数字格式进行记录和存储。多功能的Hebbian 突触器件适用于各种神经假体、脑机接口、神经机器人、神经拟态计算、机器学习和神经启发自适应控制问题。