Suppr超能文献

一种用于神经活动的广义拉盖尔 - 沃尔泰拉多输入多输出模型的基于硬件的计算平台。

A hardware-based computational platform for Generalized Laguerre-Volterra MIMO model for neural activities.

作者信息

Li Will X Y, Chan Rosa H M, Zhang Wei, Cheung Ray C C, Song Dong, Berger Theodore W

机构信息

Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR, China.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7282-5. doi: 10.1109/IEMBS.2011.6091698.

Abstract

A parallelized and pipelined architecture based on FPGA and a higher-level Self Reconfiguration Platform are proposed in this paper to model Generalized Laguerre-Volterra MIMO system essential in identifying the time-varying neural dynamics underlying spike activities. Our proposed design is based on the Xilinx Virtex-6 FPGA platform and the processing core can produce data samples at a speed of 1.33 × 10(6)/s, which is 3.1 × 10(3) times faster than the corresponding C model running on an Intel i7-860 Quad Core Processor. The ongoing work of the construction of the advanced Self Reconfiguration Platform is presented and initial test results are provided.

摘要

本文提出了一种基于现场可编程门阵列(FPGA)和更高级别的自重构平台的并行化和流水线架构,用于对广义拉盖尔 - 沃尔泰拉多输入多输出(Generalized Laguerre-Volterra MIMO)系统进行建模,该系统对于识别尖峰活动背后的时变神经动力学至关重要。我们提出的设计基于赛灵思Virtex-6 FPGA平台,处理核心能够以1.33×10⁶/秒的速度生成数据样本,这比在英特尔i7-860四核处理器上运行的相应C模型快3.1×10³倍。文中介绍了先进自重构平台建设的正在进行的工作,并提供了初步测试结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验