Suppr超能文献

神经群体动力学的稀疏广义拉盖尔-沃尔泰拉模型

Sparse generalized Laguerre-Volterra model of neural population dynamics.

作者信息

Song Dong, Chan Rosa H M, Marmarelis Vasilis Z, Hampson Robert E, Deadwyler Sam A, Berger Theodore W

机构信息

Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4555-8. doi: 10.1109/IEMBS.2009.5332719.

Abstract

To understand the function of a brain region, e.g., hippocampus, it is necessary to model its input-output property. Such a model can serve as the computational basis of the development of cortical prostheses restoring the transformation of population neural activities performed by the brain region. We formulate a sparse generalized Laguerre-Volterra model (SGLVM) for the multiple-input, multiple-output (MIMO) transformation of spike trains. A SGLVM consists of a set of feedforward Laguerre-Volterra kernels, a feedback Laguerre-Volterra kernel, and a probit link function. The sparse model representation involving only significant self and cross terms is achieved through statistical model selection and cross-validation methods. The SGLVM is applied successfully to the hippocampal CA3-CA1 population dynamics.

摘要

为了解大脑区域(如海马体)的功能,对其输入 - 输出特性进行建模是必要的。这样的模型可作为开发皮质假体的计算基础,该假体能够恢复由该大脑区域执行的群体神经活动的转换。我们为尖峰序列的多输入多输出(MIMO)转换制定了一个稀疏广义拉盖尔 - 沃尔泰拉模型(SGLVM)。一个SGLVM由一组前馈拉盖尔 - 沃尔泰拉核、一个反馈拉盖尔 - 沃尔泰拉核和一个概率链接函数组成。通过统计模型选择和交叉验证方法实现了仅涉及显著自项和交叉项的稀疏模型表示。SGLVM已成功应用于海马体CA3 - CA1群体动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验