Suppr超能文献

用于局灶性皮质发育异常患者脑皮质分割的自动三维图割技术

Automatic 3D graph cuts for brain cortex segmentation in patients with focal cortical dysplasia.

作者信息

Despotović Ivana, Segers Ief, Platisa Ljiljana, Vansteenkiste Ewout, Pizurica Aleksandra, Deblaere Karel, Philips Wilfried

机构信息

Faculty of Electrical Engineering, Ghent University, TELIN-IPI-IBBT, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7981-4. doi: 10.1109/IEMBS.2011.6091968.

Abstract

In patients with intractable epilepsy, focal cortical dysplasia (FCD) is the most frequent malformation of cortical development. Identification of subtle FCD lesions using brain MRI scans is very often based on the cortical thickness measurement, where brain cortex segmentation is required as a preprocessing step. However, the accuracy of the selected segmentation method can highly affect the final FCD lesion detection. In this work, we propose an improved graph cuts algorithm integrating Markov random field-based energy function for more accurate brain cortex MRI segmentation. Our method uses three-label graph cuts and preforms automatic 3D MRI brain cortex segmentation integrating intensity and boundary information. The performance of the method is tested on both simulated MR brain images with different noise levels and real patients with FCD lesions. Experimental quantitative segmentation results showed that the proposed method is effective, robust to noise and achieves higher accuracy than other popular brain MRI segmentation methods. The qualitative validation, visually verified by a medical expert, showed that the FCD lesions were segmented well as a part of the cortex, indicating increased thickness and cortical deformation. The proposed technique can be successfully used in this, as well as in many other clinical applications.

摘要

在难治性癫痫患者中,局灶性皮质发育不良(FCD)是最常见的皮质发育畸形。使用脑部MRI扫描识别细微的FCD病变通常基于皮质厚度测量,其中需要进行脑皮质分割作为预处理步骤。然而,所选分割方法的准确性会对最终的FCD病变检测产生很大影响。在这项工作中,我们提出了一种改进的图割算法,该算法集成了基于马尔可夫随机场的能量函数,以实现更准确的脑皮质MRI分割。我们的方法使用三标签图割,并结合强度和边界信息对3D MRI脑皮质进行自动分割。该方法在具有不同噪声水平的模拟MR脑图像和患有FCD病变的真实患者上进行了测试。实验定量分割结果表明,所提出的方法是有效的,对噪声具有鲁棒性,并且比其他流行的脑MRI分割方法具有更高的准确性。经医学专家视觉验证的定性验证表明,FCD病变作为皮质的一部分被很好地分割出来,表明厚度增加和皮质变形。所提出的技术可以成功地应用于此,以及许多其他临床应用中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验