Chen Zhe, Citi Luca, Purdon Patrick L, Brown Emery N, Barbieri Riccardo
Neuroscience Statistics Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:8444-7. doi: 10.1109/IEMBS.2011.6092083.
We present a comprehensive probabilistic point process framework to estimate and monitor the instantaneous heartbeat dynamics as related to specific cardiovascular control mechanisms and hemodynamics. Assessment of the model's statistics is established through the Wiener-Volterra theory and a multivariate autoregressive (AR) structure. A variety of instantaneous cardiovascular metrics, such as heart rate (HR), heart rate variability (HRV), respiratory sinus arrhythmia (RSA), and baroreceptor-cardiac reflex (BRS), can be rigorously derived within a parametric framework and instantaneously updated with an adaptive algorithm. Instantaneous metrics of nonlinearity, such as the bispectrum of heartbeat intervals, can also be derived. We have applied the proposed point process framework to experimental recordings from healthy subjects in order to monitor cardiovascular regulation under propofol anesthesia. Results reveal interesting dynamic trends across different pharmacological interventions, confirming the ability of the algorithm to track important changes in cardiorespiratory elicited interactions, and pointing at our mathematical approach as a promising monitoring tool for an accurate, noninvasive assessment of general anesthesia.
我们提出了一个全面的概率点过程框架,用于估计和监测与特定心血管控制机制及血流动力学相关的瞬时心跳动态。通过维纳 - 沃尔泰拉理论和多元自回归(AR)结构对模型的统计数据进行评估。在参数框架内,可以严格推导各种瞬时心血管指标,如心率(HR)、心率变异性(HRV)、呼吸性窦性心律失常(RSA)和压力感受器 - 心脏反射(BRS),并通过自适应算法即时更新。还可以推导非线性的瞬时指标,如心跳间期的双谱。我们已将所提出的点过程框架应用于健康受试者的实验记录,以监测丙泊酚麻醉下的心血管调节。结果揭示了不同药理干预下有趣的动态趋势,证实了该算法跟踪心肺诱发相互作用中重要变化的能力,并表明我们的数学方法是一种用于准确、无创评估全身麻醉的有前景的监测工具。