Neuroscience Statistics Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA.
IEEE Trans Biomed Eng. 2010 Jun;57(6):1335-47. doi: 10.1109/TBME.2010.2041002. Epub 2010 Feb 17.
Human heartbeat intervals are known to have nonlinear and nonstationary dynamics. In this paper, we propose a model of R-R interval dynamics based on a nonlinear Volterra-Wiener expansion within a point process framework. Inclusion of second-order nonlinearities into the heartbeat model allows us to estimate instantaneous heart rate (HR) and heart rate variability (HRV) indexes, as well as the dynamic bispectrum characterizing higher order statistics of the nonstationary non-gaussian time series. The proposed point process probability heartbeat interval model was tested with synthetic simulations and two experimental heartbeat interval datasets. Results show that our model is useful in characterizing and tracking the inherent nonlinearity of heartbeat dynamics. As a feature, the fine temporal resolution allows us to compute instantaneous nonlinearity indexes, thus sidestepping the uneven spacing problem. In comparison to other nonlinear modeling approaches, the point process probability model is useful in revealing nonlinear heartbeat dynamics at a fine timescale and with only short duration recordings.
人的心跳间隔被认为具有非线性和非平稳动态。在本文中,我们提出了一种基于点过程框架内的非线性 Volterra-Wiener 展开的 R-R 间隔动力学模型。在心跳模型中包含二阶非线性,可以估计瞬时心率 (HR) 和心率变异性 (HRV) 指数,以及特征更高阶统计的动态双谱非平稳非高斯时间序列。提出的点过程概率心跳间隔模型通过合成模拟和两个实验心跳间隔数据集进行了测试。结果表明,我们的模型可用于描述和跟踪心跳动力学的固有非线性。作为一种特征,精细的时间分辨率允许我们计算瞬时非线性指数,从而避免了不均匀间隔问题。与其他非线性建模方法相比,点过程概率模型可用于在精细时间尺度上揭示非线性心跳动力学,并且仅使用短持续时间记录。