Suppr超能文献

神经元抑制和兴奋,以及大脑血液动力学和氧反应的二分控制。

Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses.

机构信息

Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen N, Denmark.

出版信息

Neuroimage. 2012 Aug 15;62(2):1040-50. doi: 10.1016/j.neuroimage.2012.01.040. Epub 2012 Jan 12.

Abstract

Brain's electrical activity correlates strongly to changes in cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO(2)). Subthreshold synaptic processes correlate better than the spike rates of principal neurons to CBF, CMRO(2) and positive BOLD signals. Stimulation-induced rises in CMRO(2) are controlled by the ATP turnover, which depends on the energy used to fuel the Na,K-ATPase to reestablish ionic gradients, while stimulation-induced CBF responses to a large extent are controlled by mechanisms that depend on Ca(2+) rises in neurons and astrocytes. This dichotomy of metabolic and vascular control explains the gap between the stimulation-induced rises in CMRO(2) and CBF, and in turn the BOLD signal. Activity-dependent rises in CBF and CMRO(2) vary within and between brain regions due to differences in ATP turnover and Ca(2+)-dependent mechanisms. Nerve cells produce and release vasodilators that evoke positive BOLD signals, while the mechanisms that control negative BOLD signals by activity-dependent vasoconstriction are less well understood. Activation of both excitatory and inhibitory neurons produces rises in CBF and positive BOLD signals, while negative BOLD signals under most conditions correlate to excitation of inhibitory interneurons, but there are important exceptions to that rule as described in this paper. Thus, variations in the balance between synaptic excitation and inhibition contribute dynamically to the control of metabolic and hemodynamic responses, and in turn the amplitude and polarity of the BOLD signal. Therefore, it is not possible based on a negative or positive BOLD signal alone to decide whether the underlying activity goes on in principal or inhibitory neurons.

摘要

大脑的电活动与脑血流 (CBF) 和脑氧代谢率 (CMRO(2)) 的变化密切相关。亚阈突触过程与 CBF、CMRO(2) 和正 BOLD 信号的主要神经元尖峰率相关性更好。CMRO(2) 的刺激诱导升高受 ATP 周转率控制,这取决于用于为 Na,K-ATP 酶供能以重建离子梯度的能量,而刺激诱导的 CBF 反应在很大程度上受依赖神经元和星形胶质细胞中 Ca(2+) 升高的机制控制。这种代谢和血管控制的二分法解释了 CMRO(2) 和 CBF 与 BOLD 信号之间的刺激诱导升高之间的差距。由于 ATP 周转率和 Ca(2+)-依赖性机制的差异,CBF 和 CMRO(2) 的活动依赖性升高在大脑区域内和之间有所不同。神经细胞产生和释放血管扩张剂,引发正 BOLD 信号,而活动依赖性血管收缩控制负 BOLD 信号的机制了解较少。兴奋性和抑制性神经元的激活都会引起 CBF 和正 BOLD 信号的升高,而在大多数情况下,负 BOLD 信号与抑制性中间神经元的兴奋相关,但正如本文所述,存在重要的例外情况。因此,突触兴奋和抑制之间的平衡变化动态地控制代谢和血液动力学反应,进而控制 BOLD 信号的幅度和极性。因此,仅根据负或正 BOLD 信号本身,无法确定潜在的活动是发生在主要神经元还是抑制性神经元上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验