Department of Electrical Engineering, Yuan Ze University, No. 135, Far-Eastern Rd., Chung-Li, Tao-Yuan, 320, Taiwan. cml@saturn yzu.edu.tw.
Int J Neural Syst. 2012 Feb;22(1):37-50. doi: 10.1142/S0129065712002992.
Recurrent wavelet neural network (RWNN) has the advantages such as fast learning property, good generalization capability and information storing ability. With these advantages, this paper proposes an RWNN-based adaptive control (RBAC) system for multi-input multi-output (MIMO) uncertain nonlinear systems. The RBAC system is composed of a neural controller and a bounding compensator. The neural controller uses an RWNN to online mimic an ideal controller, and the bounding compensator can provide smooth and chattering-free stability compensation. From the Lyapunov stability analysis, it is shown that all signals in the closed-loop RBAC system are uniformly ultimately bounded. Finally, the proposed RBAC system is applied to the MIMO uncertain nonlinear systems such as a mass-spring-damper mechanical system and a two-link robotic manipulator system. Simulation results verify that the proposed RBAC system can achieve favorable tracking performance with desired robustness without any chattering phenomenon in the control effort.
递归小波神经网络(RWNN)具有快速学习能力、良好的泛化能力和信息存储能力等优点。基于这些优点,本文提出了一种基于递归小波神经网络的自适应控制(RBAC)系统,用于多输入多输出(MIMO)不确定非线性系统。RBAC 系统由一个神经网络控制器和一个边界补偿器组成。神经网络控制器使用 RWNN 在线模拟理想控制器,边界补偿器可以提供平滑且无抖动的稳定性补偿。从 Lyapunov 稳定性分析可知,闭环 RBAC 系统中的所有信号都是一致有界的。最后,将所提出的 RBAC 系统应用于多输入多输出不确定非线性系统,如质量-弹簧-阻尼机械系统和双连杆机器人系统。仿真结果验证了所提出的 RBAC 系统在控制作用中没有抖动现象的情况下,能够实现良好的跟踪性能和所需的鲁棒性。