Suppr超能文献

通用神经网络控制多输入多输出不确定非线性系统。

Universal neural network control of MIMO uncertain nonlinear systems.

出版信息

IEEE Trans Neural Netw Learn Syst. 2012 Jul;23(7):1163-9. doi: 10.1109/TNNLS.2012.2197219.

Abstract

In this brief, a continuous tracking control law is proposed for a class of high-order multi-input-multi-output uncertain nonlinear dynamic systems with external disturbance and unknown varying control direction matrix. The proposed controller consists of high-gain feedback, Nussbaum gain matrix selector, online approximator (OLA) model and a robust term. The OLA model is represented by a two-layer neural network. The continuousness of the control signal is guaranteed to relax the requirement for the actuator bandwidth and avoid the incurred chattering effect. Asymptotic tracking performance is achieved theoretically by standard Lyapunov analysis. The control feasibility is also verified in simulation environment.

摘要

在本文中,针对一类具有外部干扰和未知时变控制方向矩阵的高阶多输入多输出不确定非线性动态系统,提出了一种连续跟踪控制律。所提出的控制器由高增益反馈、Nussbaum 增益矩阵选择器、在线逼近器(OLA)模型和一个鲁棒项组成。OLA 模型由一个两层神经网络表示。控制信号的连续性保证了放宽对执行器带宽的要求并避免了产生的抖动效应。通过标准 Lyapunov 分析理论上实现了渐近跟踪性能。在仿真环境中也验证了控制的可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验