Department of Pediatrics, Division of Neurology, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
J Neurosci. 2012 Jan 18;32(3):1123-41. doi: 10.1523/JNEUROSCI.6554-10.2012.
A growing body of research indicates that amyotrophic lateral sclerosis (ALS) patients and mouse models of ALS exhibit metabolic dysfunction. A subpopulation of ALS patients possesses higher levels of resting energy expenditure and lower fat-free mass compared to healthy controls. Similarly, two mutant copper zinc superoxide dismutase 1 (mSOD1) mouse models of familial ALS possess a hypermetabolic phenotype. The pathophysiological relevance of the bioenergetic defects observed in ALS remains largely elusive. AMP-activated protein kinase (AMPK) is a key sensor of cellular energy status and thus might be activated in various models of ALS. Here, we report that AMPK activity is increased in spinal cord cultures expressing mSOD1, as well as in spinal cord lysates from mSOD1 mice. Reducing AMPK activity either pharmacologically or genetically prevents mSOD1-induced motor neuron death in vitro. To investigate the role of AMPK in vivo, we used Caenorhabditis elegans models of motor neuron disease. C. elegans engineered to express human mSOD1 (G85R) in neurons develops locomotor dysfunction and severe fecundity defects when compared to transgenic worms expressing human wild-type SOD1. Genetic reduction of aak-2, the ortholog of the AMPK α2 catalytic subunit in nematodes, improved locomotor behavior and fecundity in G85R animals. Similar observations were made with nematodes engineered to express mutant tat-activating regulatory (TAR) DNA-binding protein of 43 kDa molecular weight. Altogether, these data suggest that bioenergetic abnormalities are likely to be pathophysiologically relevant to motor neuron disease.
越来越多的研究表明,肌萎缩侧索硬化症(ALS)患者和 ALS 的小鼠模型表现出代谢功能障碍。与健康对照组相比,一些 ALS 患者的静息能量消耗水平较高,而无脂肪组织质量较低。同样,两种家族性 ALS 的突变铜锌超氧化物歧化酶 1(mSOD1)小鼠模型具有代谢亢进表型。在 ALS 中观察到的生物能缺陷的病理生理学相关性在很大程度上仍难以捉摸。AMP 激活的蛋白激酶(AMPK)是细胞能量状态的关键传感器,因此可能在各种 ALS 模型中被激活。在这里,我们报告在表达 mSOD1 的脊髓培养物以及 mSOD1 小鼠的脊髓裂解物中,AMPK 活性增加。通过药理学或遗传学降低 AMPK 活性可防止体外 mSOD1 诱导的运动神经元死亡。为了研究 AMPK 在体内的作用,我们使用了运动神经元疾病的秀丽隐杆线虫模型。在神经元中表达人 mSOD1(G85R)的 C. elegans 与表达人野生型 SOD1 的转基因蠕虫相比,表现出运动功能障碍和严重的生殖缺陷。线虫中 aak-2(线虫中 AMPK α2 催化亚基的同源物)的遗传减少改善了 G85R 动物的运动行为和生殖力。用表达突变的 tat-activating regulatory(TAR)DNA 结合蛋白 43kDa 分子量的线虫进行的类似观察也得到了证实。总之,这些数据表明,生物能异常可能与运动神经元疾病的病理生理学相关。