Suppr超能文献

基于 BI-RADS 词汇的超声检查结合观察者内变异性的逻辑回归分析和人工神经网络的比较。

A comparison of logistic regression analysis and an artificial neural network using the BI-RADS lexicon for ultrasonography in conjunction with introbserver variability.

机构信息

Department of Radiology, Kangwon National University College of Medicine, 192-1 Hyoja 2-dong, Chuncheon, Kangwon-do, 200-701, Republic of Korea.

出版信息

J Digit Imaging. 2012 Oct;25(5):599-606. doi: 10.1007/s10278-012-9457-7.

Abstract

To determine which Breast Imaging Reporting and Data System (BI-RADS) descriptors for ultrasound are predictors for breast cancer using logistic regression (LR) analysis in conjunction with interobserver variability between breast radiologists, and to compare the performance of artificial neural network (ANN) and LR models in differentiation of benign and malignant breast masses. Five breast radiologists retrospectively reviewed 140 breast masses and described each lesion using BI-RADS lexicon and categorized final assessments. Interobserver agreements between the observers were measured by kappa statistics. The radiologists' responses for BI-RADS were pooled. The data were divided randomly into train (n = 70) and test sets (n = 70). Using train set, optimal independent variables were determined by using LR analysis with forward stepwise selection. The LR and ANN models were constructed with the optimal independent variables and the biopsy results as dependent variable. Performances of the models and radiologists were evaluated on the test set using receiver-operating characteristic (ROC) analysis. Among BI-RADS descriptors, margin and boundary were determined as the predictors according to stepwise LR showing moderate interobserver agreement. Area under the ROC curves (AUC) for both of LR and ANN were 0.87 (95% CI, 0.77-0.94). AUCs for the five radiologists ranged 0.79-0.91. There was no significant difference in AUC values among the LR, ANN, and radiologists (p > 0.05). Margin and boundary were found as statistically significant predictors with good interobserver agreement. Use of the LR and ANN showed similar performance to that of the radiologists for differentiation of benign and malignant breast masses.

摘要

为了确定使用逻辑回归(LR)分析联合乳腺放射科医生之间的观察者间变异性,哪些乳腺成像报告和数据系统(BI-RADS)超声描述符可用于预测乳腺癌,并比较人工神经网络(ANN)和 LR 模型在区分良性和恶性乳腺肿块中的性能。五位乳腺放射科医生回顾性地检查了 140 个乳腺肿块,使用 BI-RADS 词汇描述每个病变,并对最终评估进行分类。观察者之间的观察者间协议通过 Kappa 统计进行测量。汇集了放射科医生对 BI-RADS 的反应。数据随机分为训练集(n=70)和测试集(n=70)。使用训练集,通过使用向前逐步选择的 LR 分析确定最佳独立变量。使用最佳独立变量和活检结果作为因变量构建 LR 和 ANN 模型。使用测试集通过接收者操作特征(ROC)分析评估模型和放射科医生的性能。在 BI-RADS 描述符中,根据逐步 LR 显示出中度观察者间一致性,确定边缘和边界为预测因子。LR 和 ANN 的 ROC 曲线下面积(AUC)均为 0.87(95%CI,0.77-0.94)。五位放射科医生的 AUC 范围为 0.79-0.91。LR、ANN 和放射科医生的 AUC 值之间没有统计学差异(p>0.05)。边缘和边界被发现是具有良好观察者间一致性的统计学上显著的预测因子。LR 和 ANN 的使用对于区分良性和恶性乳腺肿块的性能与放射科医生相似。

相似文献

2
A combined ultrasonic B-mode and color Doppler system for the classification of breast masses using neural network.
Eur Radiol. 2020 May;30(5):3023-3033. doi: 10.1007/s00330-019-06610-0. Epub 2020 Jan 31.
3
Comparison of Inter-Observer Variability and Diagnostic Performance of the Fifth Edition of BI-RADS for Breast Ultrasound of Static versus Video Images.
Ultrasound Med Biol. 2016 Sep;42(9):2083-8. doi: 10.1016/j.ultrasmedbio.2016.05.006. Epub 2016 Jun 18.
5
Observer variability of Breast Imaging Reporting and Data System (BI-RADS) for breast ultrasound.
Eur J Radiol. 2008 Feb;65(2):293-8. doi: 10.1016/j.ejrad.2007.04.008. Epub 2007 May 24.
6
BI-RADS lexicon for US and mammography: interobserver variability and positive predictive value.
Radiology. 2006 May;239(2):385-91. doi: 10.1148/radiol.2392042127. Epub 2006 Mar 28.
7
Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making.
Eur Radiol. 2019 Oct;29(10):5458-5468. doi: 10.1007/s00330-019-06118-7. Epub 2019 Mar 29.
10
Computer aided classification system for breast ultrasound based on Breast Imaging Reporting and Data System (BI-RADS).
Ultrasound Med Biol. 2007 Nov;33(11):1688-98. doi: 10.1016/j.ultrasmedbio.2007.05.016. Epub 2007 Aug 3.

引用本文的文献

1
Machine learning for screening and predicting the risk of anti-MDA5 antibody in juvenile dermatomyositis children.
Front Immunol. 2023 Jan 10;13:940802. doi: 10.3389/fimmu.2022.940802. eCollection 2022.
3
Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis.
NPJ Digit Med. 2021 Apr 7;4(1):65. doi: 10.1038/s41746-021-00438-z.
4
Preliminary study of the technical limitations of automated breast ultrasound: from procedure to diagnosis.
Radiol Bras. 2020 Sep-Oct;53(5):293-300. doi: 10.1590/0100-3984.2019.0079.
6
Comparison of three data mining models for prediction of advanced schistosomiasis prognosis in the Hubei province.
PLoS Negl Trop Dis. 2018 Feb 15;12(2):e0006262. doi: 10.1371/journal.pntd.0006262. eCollection 2018 Feb.
7
Classification of breast cancer in ultrasound imaging using a generic deep learning analysis software: a pilot study.
Br J Radiol. 2018 Feb;91(1083):20170576. doi: 10.1259/bjr.20170576. Epub 2018 Jan 10.
9
Comparison of Breast Cancer Screening Results in Korean Middle-Aged Women: A Hospital-based Prospective Cohort Study.
Osong Public Health Res Perspect. 2013 Aug;4(4):197-202. doi: 10.1016/j.phrp.2013.06.002. Epub 2013 Jun 27.

本文引用的文献

2
Breast imaging reporting and data system lexicon for US: interobserver agreement for assessment of breast masses.
Radiology. 2009 Sep;252(3):665-72. doi: 10.1148/radiol.2523080670. Epub 2009 Jun 30.
4
Replicator neural networks for universal optimal source coding.
Science. 1995 Sep 29;269(5232):1860-3. doi: 10.1126/science.269.5232.1860.
5
Observer variability of Breast Imaging Reporting and Data System (BI-RADS) for breast ultrasound.
Eur J Radiol. 2008 Feb;65(2):293-8. doi: 10.1016/j.ejrad.2007.04.008. Epub 2007 May 24.
6
BI-RADS lexicon for US and mammography: interobserver variability and positive predictive value.
Radiology. 2006 May;239(2):385-91. doi: 10.1148/radiol.2392042127. Epub 2006 Mar 28.
8
BI-RADS for sonography: positive and negative predictive values of sonographic features.
AJR Am J Roentgenol. 2005 Apr;184(4):1260-5. doi: 10.2214/ajr.184.4.01841260.
9
Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer.
Radiology. 2004 Dec;233(3):830-49. doi: 10.1148/radiol.2333031484. Epub 2004 Oct 14.
10
Problem-solving ultrasound.
Radiol Clin North Am. 2004 Sep;42(5):909-18, vii. doi: 10.1016/j.rcl.2004.06.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验