Suppr超能文献

用于预测光敏剂活性的定量构效关系(QSAR)模型的验证

Validation of quantitative structure-activity relationship (QSAR) model for photosensitizer activity prediction.

作者信息

Frimayanti Neni, Yam Mun Li, Lee Hong Boon, Othman Rozana, Zain Sharifuddin M, Rahman Noorsaadah Abd

机构信息

Department of Chemistry, Faculty of Science, University of Malaya, Lembah Pantai 50603, Kuala Lumpur, Malaysia.

出版信息

Int J Mol Sci. 2011;12(12):8626-44. doi: 10.3390/ijms12128626. Epub 2011 Nov 29.

Abstract

Photodynamic therapy is a relatively new treatment method for cancer which utilizes a combination of oxygen, a photosensitizer and light to generate reactive singlet oxygen that eradicates tumors via direct cell-killing, vasculature damage and engagement of the immune system. Most of photosensitizers that are in clinical and pre-clinical assessments, or those that are already approved for clinical use, are mainly based on cyclic tetrapyrroles. In an attempt to discover new effective photosensitizers, we report the use of the quantitative structure-activity relationship (QSAR) method to develop a model that could correlate the structural features of cyclic tetrapyrrole-based compounds with their photodynamic therapy (PDT) activity. In this study, a set of 36 porphyrin derivatives was used in the model development where 24 of these compounds were in the training set and the remaining 12 compounds were in the test set. The development of the QSAR model involved the use of the multiple linear regression analysis (MLRA) method. Based on the method, r(2) value, r(2) (CV) value and r(2) prediction value of 0.87, 0.71 and 0.70 were obtained. The QSAR model was also employed to predict the experimental compounds in an external test set. This external test set comprises 20 porphyrin-based compounds with experimental IC(50) values ranging from 0.39 μM to 7.04 μM. Thus the model showed good correlative and predictive ability, with a predictive correlation coefficient (r(2) prediction for external test set) of 0.52. The developed QSAR model was used to discover some compounds as new lead photosensitizers from this external test set.

摘要

光动力疗法是一种相对较新的癌症治疗方法,它利用氧气、光敏剂和光的组合来产生活性单线态氧,通过直接细胞杀伤、血管损伤和免疫系统参与来根除肿瘤。大多数处于临床和临床前评估阶段的光敏剂,或那些已被批准用于临床的光敏剂,主要基于环状四吡咯。为了发现新的有效光敏剂,我们报告使用定量构效关系(QSAR)方法来开发一个模型,该模型可以将基于环状四吡咯的化合物的结构特征与其光动力疗法(PDT)活性相关联。在本研究中,一组36种卟啉衍生物用于模型开发,其中24种化合物在训练集中,其余12种化合物在测试集中。QSAR模型的开发涉及使用多元线性回归分析(MLRA)方法。基于该方法,获得的r(2)值、r(2)(CV)值和r(2)预测值分别为0.87、0.71和0.70。QSAR模型还用于预测外部测试集中的实验化合物。该外部测试集包含20种基于卟啉的化合物,其实验IC(50)值范围为0.39 μM至7.04 μM。因此,该模型显示出良好的相关性和预测能力,外部测试集的预测相关系数(r(2)预测)为0.52。所开发的QSAR模型用于从该外部测试集中发现一些化合物作为新的先导光敏剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a24/3257093/d6323485399c/ijms-12-08626f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验