Suppr超能文献

在清醒小鼠中通过发放率不变神经元的尖峰脉冲来编码气味特征。

Encoding odorant identity by spiking packets of rate-invariant neurons in awake mice.

机构信息

Department of Basic Neurosciences, School of Medicine, University of Geneva, Geneva, Switzerland.

出版信息

PLoS One. 2012;7(1):e30155. doi: 10.1371/journal.pone.0030155. Epub 2012 Jan 17.

Abstract

BACKGROUND

How do neural networks encode sensory information? Following sensory stimulation, neural coding is commonly assumed to be based on neurons changing their firing rate. In contrast, both theoretical works and experiments in several sensory systems showed that neurons could encode information as coordinated cell assemblies by adjusting their spike timing and without changing their firing rate. Nevertheless, in the olfactory system, there is little experimental evidence supporting such model.

METHODOLOGY/PRINCIPAL FINDINGS: To study these issues, we implanted tetrodes in the olfactory bulb of awake mice to record the odorant-evoked activity of mitral/tufted (M/T) cells. We showed that following odorant presentation, most M/T neurons do not significantly change their firing rate over a breathing cycle but rather respond to odorant stimulation by redistributing their firing activity within respiratory cycles. In addition, we showed that sensory information can be encoded by cell assemblies composed of such neurons, thus supporting the idea that coordinated populations of globally rate-invariant neurons could be efficiently used to convey information about the odorant identity. We showed that different coding schemes can convey high amount of odorant information for specific read-out time window. Finally we showed that the optimal readout time window corresponds to the duration of gamma oscillations cycles.

CONCLUSION

We propose that odorant can be encoded by population of cells that exhibit fine temporal tuning of spiking activity while displaying weak or no firing rate change. These cell assemblies may transfer sensory information in spiking packets sequence using the gamma oscillations as a clock. This would allow the system to reach a tradeoff between rapid and accurate odorant discrimination.

摘要

背景

神经网络如何编码感官信息?在感官刺激后,通常假设神经编码是基于神经元改变其放电率。相比之下,在几个感官系统中,理论工作和实验都表明,神经元可以通过调整其尖峰时间而不改变其放电率,从而将信息编码为协调的细胞集合。然而,在嗅觉系统中,几乎没有实验证据支持这种模型。

方法/主要发现:为了研究这些问题,我们在清醒小鼠的嗅球中植入四极管,以记录气味诱发的僧帽细胞/丛细胞(M/T)的活动。我们表明,在气味呈现后,大多数 M/T 神经元在呼吸周期内不会显著改变其放电率,而是通过在呼吸周期内重新分配其放电活动来响应气味刺激。此外,我们表明,信息可以通过由这些神经元组成的细胞集合进行编码,从而支持这样的观点,即协调的全局不变率神经元群体可以有效地用于传递关于气味身份的信息。我们表明,不同的编码方案可以为特定的读取时间窗口编码高信息量的气味信息。最后,我们表明最佳的读取时间窗口对应于伽马振荡周期的持续时间。

结论

我们提出,气味可以通过表现出精细时间调谐的放电活动的细胞群体进行编码,同时显示出微弱或没有放电率变化。这些细胞集合可以通过伽马振荡作为时钟,以尖峰脉冲包序列的形式传递感官信息。这将允许系统在快速和准确的气味识别之间达到权衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f13/3260228/09bef7e6adf6/pone.0030155.g001.jpg

相似文献

1
Encoding odorant identity by spiking packets of rate-invariant neurons in awake mice.
PLoS One. 2012;7(1):e30155. doi: 10.1371/journal.pone.0030155. Epub 2012 Jan 17.
2
Behavioral Status Influences the Dependence of Odorant-Induced Change in Firing on Prestimulus Firing Rate.
J Neurosci. 2017 Feb 15;37(7):1835-1852. doi: 10.1523/JNEUROSCI.3132-16.2017. Epub 2017 Jan 16.
3
Sniffing shapes the dynamics of olfactory bulb gamma oscillations in awake behaving rats.
Eur J Neurosci. 2011 Sep;34(5):787-99. doi: 10.1111/j.1460-9568.2011.07800.x. Epub 2011 Aug 8.
4
Odor response properties of neighboring mitral/tufted cells in the rat olfactory bulb.
Neuroscience. 2005;134(3):1069-80. doi: 10.1016/j.neuroscience.2005.04.027.
6
Respiration-gated formation of gamma and beta neural assemblies in the mammalian olfactory bulb.
Eur J Neurosci. 2009 Mar;29(5):921-30. doi: 10.1111/j.1460-9568.2009.06651.x.
7
Trial-by-trial discrimination of three enantiomer pairs by neural ensembles in mammalian olfactory bulb.
J Neurophysiol. 2006 Mar;95(3):1369-79. doi: 10.1152/jn.01334.2004. Epub 2005 Nov 23.
8
Sparse and selective odor coding by mitral/tufted neurons in the main olfactory bulb.
J Neurosci. 2007 Feb 21;27(8):2091-101. doi: 10.1523/JNEUROSCI.3779-06.2007.
9
Precise olfactory responses tile the sniff cycle.
Nat Neurosci. 2011 Jul 17;14(8):1039-44. doi: 10.1038/nn.2877.
10
Inhalation Frequency Controls Reformatting of Mitral/Tufted Cell Odor Representations in the Olfactory Bulb.
J Neurosci. 2018 Feb 28;38(9):2189-2206. doi: 10.1523/JNEUROSCI.0714-17.2018. Epub 2018 Jan 26.

引用本文的文献

1
Packet information encoding in a cerebellum-like circuit.
PLoS One. 2024 Sep 20;19(9):e0308146. doi: 10.1371/journal.pone.0308146. eCollection 2024.
2
NEGR1 Modulates Mouse Affective Discrimination by Regulating Adult Olfactory Neurogenesis.
Biol Psychiatry Glob Open Sci. 2024 Jun 23;4(5):100355. doi: 10.1016/j.bpsgos.2024.100355. eCollection 2024 Sep.
3
Basal Forebrain Modulation of Olfactory Coding .
Int J Psychol Res (Medellin). 2023 Oct 10;16(2):62-86. doi: 10.21500/20112084.6486. eCollection 2023 Jul-Dec.
5
Long-range GABAergic projections contribute to cortical feedback control of sensory processing.
Nat Commun. 2022 Nov 12;13(1):6879. doi: 10.1038/s41467-022-34513-0.
6
Coupling of Mouse Olfactory Bulb Projection Neurons to Fluctuating Odor Pulses.
J Neurosci. 2022 May 25;42(21):4278-4296. doi: 10.1523/JNEUROSCI.1422-21.2022. Epub 2022 Apr 19.
7
Odor coding in piriform cortex: mechanistic insights into distributed coding.
Curr Opin Neurobiol. 2020 Oct;64:96-102. doi: 10.1016/j.conb.2020.03.001. Epub 2020 May 15.
10
Complex neural representation of odour information in the olfactory bulb.
Acta Physiol (Oxf). 2020 Jan;228(1):e13333. doi: 10.1111/apha.13333. Epub 2019 Jul 2.

本文引用的文献

1
Precise olfactory responses tile the sniff cycle.
Nat Neurosci. 2011 Jul 17;14(8):1039-44. doi: 10.1038/nn.2877.
2
Associative cortex features in the first olfactory brain relay station.
Neuron. 2011 Mar 24;69(6):1176-87. doi: 10.1016/j.neuron.2011.02.024.
3
Robust odor coding via inhalation-coupled transient activity in the mammalian olfactory bulb.
Neuron. 2010 Nov 4;68(3):570-85. doi: 10.1016/j.neuron.2010.09.040.
4
Neural syntax: cell assemblies, synapsembles, and readers.
Neuron. 2010 Nov 4;68(3):362-85. doi: 10.1016/j.neuron.2010.09.023.
5
Pyramidal cells in piriform cortex receive convergent input from distinct olfactory bulb glomeruli.
J Neurosci. 2010 Oct 20;30(42):14255-60. doi: 10.1523/JNEUROSCI.2747-10.2010.
6
Olfactory coding with patterns of response latencies.
Neuron. 2010 Sep 9;67(5):872-84. doi: 10.1016/j.neuron.2010.08.005.
8
Neural ensemble codes for stimulus periodicity in auditory cortex.
J Neurosci. 2010 Apr 7;30(14):5078-91. doi: 10.1523/JNEUROSCI.5475-09.2010.
9
Odor information processing by the olfactory bulb analyzed in gene-targeted mice.
Neuron. 2010 Mar 25;65(6):912-26. doi: 10.1016/j.neuron.2010.02.011.
10
Synaptic inhibition in the olfactory bulb accelerates odor discrimination in mice.
Neuron. 2010 Feb 11;65(3):399-411. doi: 10.1016/j.neuron.2010.01.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验