Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, Australia.
Neuroimage. 2012 Apr 2;60(2):1055-62. doi: 10.1016/j.neuroimage.2012.01.068. Epub 2012 Jan 16.
The scenario considered here is one where brain connectivity is represented as a network and an experimenter wishes to assess the evidence for an experimental effect at each of the typically thousands of connections comprising the network. To do this, a univariate model is independently fitted to each connection. It would be unwise to declare significance based on an uncorrected threshold of α=0.05, since the expected number of false positives for a network comprising N=90 nodes and N(N-1)/2=4005 connections would be 200. Control of Type I errors over all connections is therefore necessary. The network-based statistic (NBS) and spatial pairwise clustering (SPC) are two distinct methods that have been used to control family-wise errors when assessing the evidence for an experimental effect with mass univariate testing. The basic principle of the NBS and SPC is the same as supra-threshold voxel clustering. Unlike voxel clustering, where the definition of a voxel cluster is unambiguous, 'clusters' formed among supra-threshold connections can be defined in different ways. The NBS defines clusters using the graph theoretical concept of connected components. SPC on the other hand uses a more stringent pairwise clustering concept. The purpose of this article is to compare the pros and cons of the NBS and SPC, provide some guidelines on their practical use and demonstrate their utility using a case study involving neuroimaging data.
这里考虑的情况是,将大脑连接表示为一个网络,实验者希望评估实验效果在网络中通常包含的数千个连接中的每一个上的证据。为此,对每个连接独立拟合单变量模型。如果基于未校正的α=0.05 阈值声明显著性,那就不明智了,因为包含 N=90 个节点和 N(N-1)/2=4005 个连接的网络的假阳性预期数量将为 200。因此,有必要控制所有连接的 I 型错误。网络基统计量 (NBS) 和空间成对聚类 (SPC) 是两种不同的方法,用于在使用大量单变量测试评估实验效果的证据时控制总体错误率。NBS 和 SPC 的基本原理与超阈值体素聚类相同。与体素聚类不同,体素聚类的定义是明确的,超阈值连接之间形成的“聚类”可以以不同的方式定义。NBS 使用连通分量的图论概念来定义聚类。另一方面,SPC 使用更严格的成对聚类概念。本文的目的是比较 NBS 和 SPC 的优缺点,提供一些关于它们实际使用的指南,并使用涉及神经影像学数据的案例研究来证明它们的效用。