Suppr超能文献

网络结构影响学习到的神经表征的强度。

Network structure influences the strength of learned neural representations.

作者信息

Kahn Ari E, Szymula Karol, Loman Sophie, Haggerty Edda B, Nyema Nathaniel, Aguirre Geoffrey K, Bassett Dani S

机构信息

Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, 08540, USA.

Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA.

出版信息

Nat Commun. 2025 Jan 24;16(1):994. doi: 10.1038/s41467-024-55459-5.

Abstract

From sequences of discrete events, humans build mental models of their world. Referred to as graph learning, the process produces a model encoding the graph of event-to-event transition probabilities. Recent evidence suggests that some networks are easier to learn than others, but the neural underpinnings of this effect remain unknown. Here we use fMRI to show that even over short timescales the network structure of a temporal sequence of stimuli determines the fidelity of event representations as well as the dimensionality of the space in which those representations are encoded: when the graph was modular as opposed to lattice-like, BOLD representations in visual areas better predicted trial identity and displayed higher intrinsic dimensionality. Broadly, our study shows that network context influences the strength of learned neural representations, motivating future work in the design, optimization, and adaptation of network contexts for distinct types of learning.

摘要

人类通过离散事件序列构建其世界的心理模型。这个过程被称为图学习,它产生一个对事件到事件转换概率的图进行编码的模型。最近的证据表明,某些网络比其他网络更容易学习,但这种效应的神经基础仍然未知。在这里,我们使用功能磁共振成像(fMRI)来表明,即使在短时间尺度上,刺激的时间序列的网络结构也决定了事件表征的保真度以及编码这些表征的空间维度:当图是模块化的而不是晶格状时,视觉区域中的血氧水平依赖(BOLD)表征能更好地预测试验身份并显示出更高的内在维度。总体而言,我们的研究表明网络背景会影响所学神经表征的强度,这为未来针对不同类型学习的网络背景设计、优化和适应方面的工作提供了动力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/078b/11759951/5e8104ee0039/41467_2024_55459_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验