Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/INRA/SupAgro-M/UM2, Institut de Biologie Intégrative des Plantes-Claude Grignon, Place Viala, 34060 Montpellier Cedex 1, France.
Semin Cell Dev Biol. 2012 Aug;23(6):648-54. doi: 10.1016/j.semcdb.2012.01.004. Epub 2012 Jan 17.
Nitrate (NO(3)(-)) is a major nutrient for plants, taken up by their roots from the soil. Plants are able to sense NO(3)(-) in their environment, allowing them to quickly respond to the dramatic fluctuations of its availability. Significant advances have been made during the recent period concerning the molecular mechanisms of NO(3)(-) sensing and signaling in the model plant Arabidopsis thaliana. The striking action of NO(3)(-) as a signal regulating genome expression has been unraveled. Note worthily, NO(3)(-) sensing systems have been identified. These correspond to membrane transporters also ensuring the uptake of NO(3)(-) into root cells, thus generalizing the nutrient 'transceptor' (transporter/receptor) concept defined in yeast. Furthermore, components of the downstream transduction cascades, such as transcription factors or kinases, have also been isolated. A breakthrough arising from this improved knowledge is a better understanding of the integration of NO(3)(-) and hormone signaling pathways, that explains the extraordinary developmental plasticity of plants in response to NO(3)(-).
硝酸盐(NO3-)是植物的主要营养物质,由其根部从土壤中吸收。植物能够感知其环境中的 NO3-,从而能够快速响应其可用性的剧烈波动。在模式植物拟南芥中,NO3-感应和信号转导的分子机制的研究取得了重大进展。NO3-作为调节基因组表达的信号的惊人作用已经被揭示。值得注意的是,已经鉴定出了 NO3-感应系统。这些系统对应于膜转运蛋白,也确保了 NO3-进入根细胞的吸收,从而概括了在酵母中定义的营养“转受体”(转运蛋白/受体)概念。此外,下游转导级联的成分,如转录因子或激酶,也已被分离出来。这方面知识的提高带来了一个突破,即更好地理解了 NO3-和激素信号通路的整合,这解释了植物对 NO3-的非凡发育可塑性。