Lezhneva Lina, Kiba Takatoshi, Feria-Bourrellier Ana-Belen, Lafouge Florence, Boutet-Mercey Stéphanie, Zoufan Parzhak, Sakakibara Hitoshi, Daniel-Vedele Françoise, Krapp Anne
Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, Versailles, F-78000, France; AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, F-78000, France.
Plant J. 2014 Oct;80(2):230-41. doi: 10.1111/tpj.12626. Epub 2014 Aug 25.
Nitrogen is a key mineral nutrient playing a crucial role in plant growth and development. Understanding the mechanisms of nitrate uptake from the soil and distribution through the plant in response to nitrogen starvation is an important step on the way to improve nitrogen uptake and utilization efficiency for better growth and productivity of plants, and to prevent negative effects of nitrogen fertilizers on the environment and human health. In this study, we show that Arabidopsis NITRATE TRANSPORTER 2.5 (NRT2.5) is a plasma membrane-localized high-affinity nitrate transporter playing an essential role in adult plants under severe nitrogen starvation. NRT2.5 expression is induced under nitrogen starvation and NRT2.5 becomes the most abundant transcript amongst the seven NRT2 family members in shoots and roots of adult plants after long-term starvation. GUS reporter analyses showed that NRT2.5 is expressed in the epidermis and the cortex of roots at the root hair zone and in minor veins of mature leaves. Reduction of NRT2.5 expression resulted in a decrease in high-affinity nitrate uptake without impacting low-affinity uptake. In the background of the high-affinity nitrate transporter mutant nrt2.4, an nrt2.5 mutation reduced nitrate levels in the phloem of N-starved plants further than in the single nrt2.4 mutants. Growth analyses of multiple mutants between NRT2.1, NRT2.2, NRT2.4, and NRT2.5 revealed that NRT2.5 is required to support growth of nitrogen-starved adult plants by ensuring the efficient uptake of nitrate collectively with NRT2.1, NRT2.2 and NRT2.4 and by taking part in nitrate loading into the phloem during nitrate remobilization.
氮是一种关键的矿质营养元素,在植物生长发育过程中起着至关重要的作用。了解植物响应氮饥饿时从土壤中吸收硝酸盐并在体内分配的机制,是提高植物氮吸收和利用效率以实现更好生长和生产力、并防止氮肥对环境和人类健康产生负面影响的重要一步。在本研究中,我们发现拟南芥硝酸盐转运蛋白2.5(NRT2.5)是一种定位于质膜的高亲和力硝酸盐转运蛋白,在严重氮饥饿条件下对成年植株起着至关重要的作用。NRT2.5的表达在氮饥饿时被诱导,并且在长期饥饿后,NRT2.5成为成年植株地上部和根部七个NRT2家族成员中表达量最高的转录本。GUS报告基因分析表明,NRT2.5在根毛区的根表皮和皮层以及成熟叶片的小叶脉中表达。NRT2.5表达量的降低导致高亲和力硝酸盐吸收减少,而不影响低亲和力吸收。在高亲和力硝酸盐转运蛋白突变体nrt2.4的背景下,nrt2.5突变比单一nrt2.4突变体更能进一步降低氮饥饿植株韧皮部中的硝酸盐水平。对NRT2.1、NRT2.2、NRT2.4和NRT2.5之间多个突变体的生长分析表明,如果要支持氮饥饿成年植株的生长,NRT2.5是必需的,它要与NRT2.1、NRT2.2和NRT2.4共同确保硝酸盐的有效吸收,并在硝酸盐再转运过程中参与硝酸盐向韧皮部的装载。