Suppr超能文献

具有亚群体间异质接触的SIS传染病中的循环随机波动。

Circular stochastic fluctuations in SIS epidemics with heterogeneous contacts among sub-populations.

作者信息

Wang Jia-Zeng, Qian Min, Qian Hong

机构信息

Department of Mathematics, Beijing Technology and Business University, Beijing 100048, PR China.

出版信息

Theor Popul Biol. 2012 May;81(3):223-31. doi: 10.1016/j.tpb.2012.01.002. Epub 2012 Jan 16.

Abstract

The conceptual difference between equilibrium and non-equilibrium steady state (NESS) is well established in physics and chemistry. This distinction, however, is not widely appreciated in dynamical descriptions of biological populations in terms of differential equations in which fixed point, steady state, and equilibrium are all synonymous. We study NESS in a stochastic SIS (susceptible-infectious-susceptible) system with heterogeneous individuals in their contact behavior represented in terms of subgroups. In the infinite population limit, the stochastic dynamics yields a system of deterministic evolution equations for population densities; and for very large but finite systems a diffusion process is obtained. We report the emergence of a circular dynamics in the diffusion process, with an intrinsic frequency, near the endemic steady state. The endemic steady state is represented by a stable node in the deterministic dynamics. As a NESS phenomenon, the circular motion is caused by the intrinsic heterogeneity within the subgroups, leading to a broken symmetry and time irreversibility.

摘要

平衡态与非平衡稳态(NESS)之间的概念差异在物理学和化学领域已得到充分确立。然而,在以微分方程描述生物种群动态时,这种区别并未得到广泛认可,在这类描述中,不动点、稳态和平衡态都是同义词。我们研究了一个随机的SIS(易感 - 感染 - 易感)系统中的NESS,该系统中的个体在接触行为上具有异质性,通过子群体来表示。在无限种群极限情况下,随机动力学产生了一个关于种群密度的确定性演化方程组;对于非常大但有限的系统,则得到一个扩散过程。我们报告了在扩散过程中,在地方病稳态附近出现了一种具有固有频率的循环动力学。地方病稳态在确定性动力学中由一个稳定节点表示。作为一种NESS现象,这种圆周运动是由子群体内部的固有异质性引起的,导致了对称性破缺和时间不可逆性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验