Suppr超能文献

具有随机波动的 SIS 传染病模型的哈密顿动力学。

Hamiltonian dynamics of the SIS epidemic model with stochastic fluctuations.

机构信息

Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, Avenida Bandeirantes 3900, 14040-901, Ribeirão Preto, Brazil.

Instituto Nacional de Ciência e Tecnologia - Sistemas Complexos (INCT-SC), 22460-320, Rio de Janeiro, Brazil.

出版信息

Sci Rep. 2019 Nov 1;9(1):15841. doi: 10.1038/s41598-019-52351-x.

Abstract

Empirical records of epidemics reveal that fluctuations are important factors for the spread and prevalence of infectious diseases. The exact manner in which fluctuations affect spreading dynamics remains poorly known. Recent analytical and numerical studies have demonstrated that improved differential equations for mean and variance of infected individuals reproduce certain regimes of the SIS epidemic model. Here, we show they form a dynamical system that follows Hamilton's equations, which allow us to understand the role of fluctuations and their effects on epidemics. Our findings show the Hamiltonian is a constant of motion for large population sizes. For small populations, finite size effects break the temporal symmetry and induce a power-law decay of the Hamiltonian near the outbreak onset, with a parameter-free exponent. Away from the onset, the Hamiltonian decays exponentially according to a constant relaxation time, which we propose as a metric when fluctuations cannot be neglected.

摘要

传染病的经验记录表明,波动是传染病传播和流行的重要因素。波动对传播动态的具体影响仍知之甚少。最近的分析和数值研究表明,改进的感染个体均值和方差的微分方程再现了 SIS 传染病模型的某些状态。在这里,我们证明它们形成了一个遵循哈密顿方程的动力系统,这使我们能够了解波动的作用及其对传染病的影响。我们的发现表明,哈密顿量是大种群的运动常数。对于小种群,有限尺寸效应打破了时间对称性,并在爆发开始时诱导哈密顿量的幂律衰减,且无参数指数。在爆发开始之外,哈密顿量根据常数弛豫时间呈指数衰减,我们建议在波动不可忽略时将其作为一种度量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19c3/6825157/c714f9f105b0/41598_2019_52351_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验