Suppr超能文献

通过静电驱动对锗纳米梁进行应变工程

Strain Engineering of Germanium Nanobeams by Electrostatic Actuation.

作者信息

Ayan Arman, Turkay Deniz, Unlu Buse, Naghinazhadahmadi Parisa, Oliaei Samad Nadimi Bavil, Boztug Cicek, Yerci Selcuk

机构信息

Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, 06800, Turkey.

Center for Solar Energy Research and Applications, Middle East Technical University, Ankara, 06800, Turkey.

出版信息

Sci Rep. 2019 Mar 21;9(1):4963. doi: 10.1038/s41598-019-41097-1.

Abstract

Germanium (Ge) is a promising material for the development of a light source compatible with the silicon microfabrication technology, even though it is an indirect-bandgap material in its bulk form. Among various techniques suggested to boost the light emission efficiency of Ge, the strain induction is capable of providing the wavelength tunability if the strain is applied via an external force. Here, we introduce a method to control the amount of the axial strain, and therefore the emission wavelength, on a suspended Ge nanobeam by an applied voltage. We demonstrate, based on mechanical and electrical simulations, that axial strains over 4% can be achieved without experiencing any mechanical and/or electrical failure. We also show that the non-uniform strain distribution on the Ge nanobeam as a result of the applied voltage enhances light emission over 6 folds as compared to a Ge nanobeam with a uniform strain distribution. We anticipate that electrostatic actuation of Ge nanobeams provides a suitable platform for the realization of the on-chip tunable-wavelength infrared light sources that can be monolithically integrated on Si chips.

摘要

锗(Ge)是一种很有前景的材料,可用于开发与硅微加工技术兼容的光源,尽管其块状形式是间接带隙材料。在为提高锗的发光效率而提出的各种技术中,如果通过外力施加应变,应变诱导能够提供波长可调性。在此,我们介绍一种通过施加电压来控制悬浮锗纳米梁上轴向应变的量,进而控制发射波长的方法。基于力学和电学模拟,我们证明可以实现超过4%的轴向应变而不会出现任何机械和/或电气故障。我们还表明,与具有均匀应变分布的锗纳米梁相比,由于施加电压导致的锗纳米梁上不均匀应变分布使发光增强了6倍以上。我们预计,锗纳米梁的静电驱动为实现可单片集成在硅芯片上的片上可调波长红外光源提供了一个合适的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25d4/6428825/a4c50a99483a/41598_2019_41097_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验