Chen Di, Vasiljevic Natasa, Sarua Andrei, Kuball Martin, Balram Krishna C
School of Physics, H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom.
Centre for Device Thermography and Reliability, School of Physics, H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom.
Nano Lett. 2025 Aug 27;25(34):12899-12904. doi: 10.1021/acs.nanolett.5c02870. Epub 2025 Aug 13.
Tuning the local film stress (and associated strain) provides a universal route toward exerting dynamic control on propagating fields in nanoscale geometries and engineering controlled interactions between them. The majority of existing techniques are adapted for engineering either uniform stresses or fixed stress gradients, but there is a need to develop methods that can provide independent precision control over the local stress at the nanoscale in the 2D plane. Here, we explore electrochemical absorption of hydrogen in structured palladium thin-film electrodes and the associated shape-dependent stress to engineer controlled, localized stresses in thin films. We discuss the prospects of this technique for precision dynamic tuning of nanoscale opto-electro-mechanical devices and the development of field-programmable non-volatile set-and-forget architectures. We also outline some of the key challenges that need to be addressed with a view toward incorporating electrochemical stress tuning methods for post-processing foundry devices.
调节局部薄膜应力(以及相关应变)为在纳米级几何结构中对传播场施加动态控制以及设计它们之间的可控相互作用提供了一条通用途径。现有的大多数技术适用于设计均匀应力或固定应力梯度,但需要开发能够在二维平面内对纳米级局部应力提供独立精确控制的方法。在此,我们探索结构化钯薄膜电极中氢的电化学吸收以及相关的形状依赖应力,以设计薄膜中可控的局部应力。我们讨论了该技术在纳米级光电器件精确动态调谐以及现场可编程非易失性置位遗忘架构开发方面的前景。我们还概述了一些关键挑战,这些挑战需要针对将电化学应力调谐方法纳入后处理代工器件加以解决。