Ramirez David A, Hayat Majeed M, Rees Graham J, Jiang Xudong, Itzler Mark A
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico, USA.
Opt Express. 2012 Jan 16;20(2):1512-29. doi: 10.1364/OE.20.001512.
Single-photon avalanche diodes (SPADs) are primary devices in photon counting systems used in quantum cryptography, time resolved spectroscopy and photon counting optical communication. SPADs convert each photo-generated electron hole pair to a measurable current via an avalanche of impact ionizations. In this paper, a stochastically self-regulating avalanche model for passively quenched SPADs is presented. The model predicts, in qualitative agreement with experiments, three important phenomena that traditional models are unable to predict. These are: (1) an oscillatory behavior of the persistent avalanche current; (2) an exponential (memoryless) decay of the probability density function of the stochastic quenching time of the persistent avalanche current; and (3) a fast collapse of the avalanche current, under strong feedback conditions, preventing the development of a persistent avalanche current. The model specifically captures the effect of the load's feedback on the stochastic avalanche multiplication, an effect believed to be key in breaking today's counting rate barrier in the 1.55-μm detection window.
单光子雪崩二极管(SPAD)是用于量子密码学、时间分辨光谱学和光子计数光通信的光子计数系统中的主要器件。SPAD通过碰撞电离雪崩将每个光生电子空穴对转换为可测量的电流。本文提出了一种用于被动猝灭SPAD的随机自调节雪崩模型。该模型在定性上与实验一致,预测了传统模型无法预测的三个重要现象。它们是:(1)持续雪崩电流的振荡行为;(2)持续雪崩电流随机猝灭时间概率密度函数的指数(无记忆)衰减;(3)在强反馈条件下雪崩电流的快速崩溃,阻止了持续雪崩电流的发展。该模型特别捕捉了负载反馈对随机雪崩倍增的影响,这种影响被认为是突破当今1.55μm检测窗口计数率壁垒的关键。