Yan Zhizhong, Hamel Deny R, Heinrichs Aimee K, Jiang Xudong, Itzler Mark A, Jennewein Thomas
Institute for Quantum Computing, University of Waterloo, 200 University Avenue W, Waterloo N2L 3G1, Canada.
Rev Sci Instrum. 2012 Jul;83(7):073105. doi: 10.1063/1.4732813.
It is challenging to implement genuine free running single-photon detectors for the 1550 nm wavelength range with simultaneously high detection efficiency (DE), low dark noise, and good time resolution. We report a novel read out system for the signals from a negative feedback avalanche diode (NFAD) [M. A. Itzler, X. Jiang, B. Nyman, and K. Slomkowski, "Quantum sensing and nanophotonic devices VI," Proc. SPIE 7222, 72221K (2009); X. Jiang, M. A. Itzler, K. ODonnell, M. Entwistle, and K. Slomkowski, "Advanced photon counting techniques V," Proc. SPIE 8033, 80330K (2011); M. A. Itzler, X. Jiang, B. M. Onat, and K. Slomkowski, "Quantum sensing and nanophotonic devices VII," Proc. SPIE 7608, 760829 (2010)], which allows useful operation of these devices at a temperature of 193 K and results in very low darkcounts (∼100 counts per second (CPS)), good time jitter (∼30 ps), and good DE (∼10%). We characterized two NFADs with a time-correlation method using photons generated from weak coherent pulses and photon pairs produced by spontaneous parametric down conversion. The inferred detector efficiencies for both types of photon sources agree with each other. The best noise equivalent power of the device is estimated to be 8.1 × 10(-18) W Hz(-1/2), more than 10 times better than typical InP/InGaAs single photon avalanche diodes (SPADs) show in free running mode. The afterpulsing probability was found to be less than 0.1% per ns at the optimized operating point. In addition, we studied the performance of an entanglement-based quantum key distribution (QKD) using these detectors and develop a model for the quantum bit error rate that incorporates the afterpulsing coefficients. We verified experimentally that using these NFADs it is feasible to implement QKD over 400 km of telecom fiber. Our NFAD photon detector system is very simple, and is well suited for single-photon applications where ultra-low noise and free-running operation is required, and some afterpulsing can be tolerated.
要实现适用于1550纳米波长范围的真正自由运行单光子探测器,同时具备高探测效率(DE)、低暗噪声和良好的时间分辨率,具有很大的挑战性。我们报道了一种用于负反馈雪崩二极管(NFAD)信号的新型读出系统[M. A. Itzler, X. Jiang, B. Nyman, and K. Slomkowski, "Quantum sensing and nanophotonic devices VI," Proc. SPIE 7222, 72221K (2009); X. Jiang, M. A. Itzler, K. ODonnell, M. Entwistle, and K. Slomkowski, "Advanced photon counting techniques V," Proc. SPIE 8033, 80330K (2011); M. A. Itzler, X. Jiang, B. M. Onat, and K. Slomkowski, "Quantum sensing and nanophotonic devices VII," Proc. SPIE 7608, 760829 (2010)],该系统能使这些器件在193 K的温度下有效运行,并实现非常低的暗计数(约每秒100次计数(CPS))、良好的时间抖动(约30皮秒)和良好的探测效率(约10%)。我们使用弱相干脉冲产生的光子以及自发参量下转换产生的光子对,通过时间关联方法对两个NFAD进行了表征。两种光子源的推断探测器效率相互吻合。该器件的最佳噪声等效功率估计为8.1×10^(-18) W Hz^(-1/2),比自由运行模式下典型的InP/InGaAs单光子雪崩二极管(SPAD)高出10倍以上。在优化的工作点,发现后脉冲概率小于每纳秒0.1%。此外,我们研究了使用这些探测器的基于纠缠的量子密钥分发(QKD)性能,并开发了一个包含后脉冲系数的量子比特误码率模型。我们通过实验验证,使用这些NFAD在400公里的电信光纤上实现QKD是可行的。我们的NFAD光子探测器系统非常简单,非常适合需要超低噪声和自由运行操作且能容忍一些后脉冲的单光子应用。