Suppr超能文献

微小 RNA 调节动脉粥样硬化中的脂质代谢。

MicroRNAs regulating lipid metabolism in atherogenesis.

机构信息

Department of Medicine and Cell Biology, New York University School of Medicine, New York, New York, USA.

出版信息

Thromb Haemost. 2012 Apr;107(4):642-7. doi: 10.1160/TH11-10-0694. Epub 2012 Jan 25.

Abstract

MicroRNAs have emerged as important post-transcriptional regulators of lipid metabolism, and represent a new class of targets for therapeutic intervention. Recently, microRNA-33a and b (miR-33a/b) were discovered as key regulators of metabolic programs including cholesterol and fatty acid homeostasis. These intronic microRNAs are embedded in the sterol response element binding protein genes, SREBF2 and SREBF1, which code for transcription factors that coordinate cholesterol and fatty acid synthesis. By repressing a variety of genes involved in cholesterol export and fatty acid oxidation, including ABCA1, CROT, CPT1, HADHB and PRKAA1, miR-33a/b act in concert with their host genes to boost cellular sterol levels. Recent work in animal models has shown that inhibition of these small non-coding RNAs has potent effects on lipoprotein metabolism, including increasing plasma high-density lipoprotein (HDL) and reducing very low density lipoprotein (VLDL) triglycerides. Furthermore, other microRNAs are being discovered that also target the ABCA1 pathway, including miR-758, suggesting that miRNAs may work cooperatively to regulate this pathway. These exciting findings support the development of microRNA antagonists as potential therapeutics for the treatment of dyslipidaemia, atherosclerosis and related metabolic diseases.

摘要

MicroRNAs 已成为脂质代谢的重要转录后调控因子,代表了治疗干预的一类新靶点。最近,microRNA-33a 和 b(miR-33a/b)被发现是包括胆固醇和脂肪酸稳态在内的代谢程序的关键调节剂。这些内含子 microRNAs 嵌入固醇反应元件结合蛋白基因 SREBF2 和 SREBF1 中,这些基因编码协调胆固醇和脂肪酸合成的转录因子。通过抑制包括 ABCA1、CROT、CPT1、HADHB 和 PRKAA1 在内的多种参与胆固醇外排和脂肪酸氧化的基因,miR-33a/b 与其宿主基因协同作用,提高细胞内胆固醇水平。动物模型的最新研究表明,抑制这些小非编码 RNA 对脂蛋白代谢有很强的影响,包括增加血浆高密度脂蛋白(HDL)和降低极低密度脂蛋白(VLDL)甘油三酯。此外,还发现了其他靶向 ABCA1 途径的 microRNAs,包括 miR-758,表明 microRNAs 可能协同作用以调节该途径。这些令人兴奋的发现支持将 microRNA 拮抗剂作为治疗血脂异常、动脉粥样硬化和相关代谢疾病的潜在治疗方法的发展。

相似文献

1
MicroRNAs regulating lipid metabolism in atherogenesis.
Thromb Haemost. 2012 Apr;107(4):642-7. doi: 10.1160/TH11-10-0694. Epub 2012 Jan 25.
2
3
MicroRNAs in metabolism and metabolic diseases.
Cold Spring Harb Symp Quant Biol. 2011;76:225-33. doi: 10.1101/sqb.2011.76.011049. Epub 2011 Dec 12.
4
MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis.
Science. 2010 Jun 18;328(5985):1566-9. doi: 10.1126/science.1189123. Epub 2010 May 13.
6
MicroRNA-33a/b in lipid metabolism – novel “thrifty” models.
Circ J. 2015;79(2):278-84. doi: 10.1253/circj.CJ-14-1252. Epub 2015 Jan 8.
7
"Micromanaging" metabolic syndrome.
Cell Cycle. 2011 Oct 1;10(19):3249-52. doi: 10.4161/cc.10.19.17558.
8
MiR-33 contributes to the regulation of cholesterol homeostasis.
Science. 2010 Jun 18;328(5985):1570-3. doi: 10.1126/science.1189862. Epub 2010 May 13.
9
Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXRα expression and cholesterol homeostasis.
Cell Death Dis. 2013 Aug 29;4(8):e780. doi: 10.1038/cddis.2013.301.
10
MicroRNA modulation of cholesterol homeostasis.
Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):2378-82. doi: 10.1161/ATVBAHA.111.226688.

引用本文的文献

1
Bta-miR-33a affects gene expression and lipid levels in Chinese Holstein mammary epithelial cells.
Arch Anim Breed. 2022 Oct 10;65(4):357-370. doi: 10.5194/aab-65-357-2022. eCollection 2022.
3
A systematic review and metaanalysis of observational studies on the effects of epigenetic factors on serum triglycerides.
Arch Endocrinol Metab. 2022 May 13;66(3):407-419. doi: 10.20945/2359-3997000000472. Epub 2022 May 12.
4
miRNAs and lncRNAs: Potential Non-Invasive Biomarkers for Endometriosis.
Biomedicines. 2021 Nov 11;9(11):1662. doi: 10.3390/biomedicines9111662.
6
Circulating microRNAs 34a, 122, and 192 are linked to obesity-associated inflammation and metabolic disease in pediatric patients.
Int J Obes (Lond). 2021 Aug;45(8):1763-1772. doi: 10.1038/s41366-021-00842-1. Epub 2021 May 13.
8
Lipolysis by downregulating miR-92a activates the Wnt/β-catenin signaling pathway in hypoxic rats.
Biomed Rep. 2020 Oct;13(4):33. doi: 10.3892/br.2020.1340. Epub 2020 Aug 4.
9
miR-26a mediates LC-PUFA biosynthesis by targeting the Lxrα-Srebp1 pathway in the marine teleost .
J Biol Chem. 2020 Oct 2;295(40):13875-13886. doi: 10.1074/jbc.RA120.014858. Epub 2020 Aug 5.

本文引用的文献

1
2
MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1.
Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):2707-14. doi: 10.1161/ATVBAHA.111.232066.
3
Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis.
J Clin Invest. 2011 Jul;121(7):2921-31. doi: 10.1172/JCI57275. Epub 2011 Jun 6.
4
miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling.
Proc Natl Acad Sci U S A. 2011 May 31;108(22):9232-7. doi: 10.1073/pnas.1102281108. Epub 2011 May 16.
5
Novel HDL-directed pharmacotherapeutic strategies.
Nat Rev Cardiol. 2011 May;8(5):266-77. doi: 10.1038/nrcardio.2010.200. Epub 2011 Jan 18.
6
MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo.
Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17321-6. doi: 10.1073/pnas.1008499107. Epub 2010 Sep 20.
7
Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation.
J Biol Chem. 2010 Oct 29;285(44):33652-61. doi: 10.1074/jbc.M110.152090. Epub 2010 Aug 22.
9
miR-33 links SREBP-2 induction to repression of sterol transporters.
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12228-32. doi: 10.1073/pnas.1005191107. Epub 2010 Jun 21.
10
MiR-33 contributes to the regulation of cholesterol homeostasis.
Science. 2010 Jun 18;328(5985):1570-3. doi: 10.1126/science.1189862. Epub 2010 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验