Suppr超能文献

一种优化反式剪接核酶的体内选择方法。

An in vivo selection method to optimize trans-splicing ribozymes.

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.

出版信息

RNA. 2012 Mar;18(3):581-9. doi: 10.1261/rna.028472.111. Epub 2012 Jan 24.

Abstract

Group I intron ribozymes can repair mutated mRNAs by replacing the 3'-terminal portion of the mRNA with their own 3'-exon. This trans-splicing reaction has the potential to treat genetic disorders and to selectively kill cancer cells or virus-infected cells. However, these ribozymes have not yet been used in therapy, partially due to a low in vivo trans-splicing efficiency. Previous strategies to improve the trans-splicing efficiencies focused on designing and testing individual ribozyme constructs. Here we describe a method that selects the most efficient ribozymes from millions of ribozyme variants. This method uses an in vivo rescue assay where the mRNA of an inactivated antibiotic resistance gene is repaired by trans-splicing group I intron ribozymes. Bacterial cells that express efficient trans-splicing ribozymes are able to grow on medium containing the antibiotic chloramphenicol. We randomized a 5'-terminal sequence of the Tetrahymena thermophila group I intron and screened a library with 9 × 10⁶ ribozyme variants for the best trans-splicing activity. The resulting ribozymes showed increased trans-splicing efficiency and help the design of efficient trans-splicing ribozymes for different sequence contexts. This in vivo selection method can now be used to optimize any sequence in trans-splicing ribozymes.

摘要

I 类内含子核酶可以通过用自身的 3' - 外显子替换 mRNA 的 3' - 末端部分来修复突变的 mRNA。这种反式剪接反应有可能治疗遗传疾病,并选择性地杀死癌细胞或病毒感染的细胞。然而,这些核酶尚未在治疗中使用,部分原因是体内反式剪接效率低。以前提高反式剪接效率的策略主要集中在设计和测试单个核酶构建体上。在这里,我们描述了一种从数百万个核酶变体中选择最有效核酶的方法。该方法使用体内拯救测定,其中失活抗生素抗性基因的 mRNA 通过 I 类内含子核酶的反式剪接进行修复。能够表达有效反式剪接核酶的细菌细胞能够在含有抗生素氯霉素的培养基中生长。我们随机化了嗜热四膜虫 I 类内含子的 5' - 末端序列,并对含有 9 × 10⁶ 核酶变体的文库进行了筛选,以获得最佳的反式剪接活性。所得核酶显示出提高的反式剪接效率,并有助于设计用于不同序列背景的高效反式剪接核酶。这种体内选择方法现在可用于优化反式剪接核酶中的任何序列。

相似文献

1
An in vivo selection method to optimize trans-splicing ribozymes.
RNA. 2012 Mar;18(3):581-9. doi: 10.1261/rna.028472.111. Epub 2012 Jan 24.
2
Trans-splicing with the group I intron ribozyme from Azoarcus.
RNA. 2014 Feb;20(2):202-13. doi: 10.1261/rna.041012.113. Epub 2013 Dec 16.
3
Computational prediction of efficient splice sites for trans-splicing ribozymes.
RNA. 2012 Mar;18(3):590-602. doi: 10.1261/rna.029884.111. Epub 2012 Jan 24.
4
RNA reprogramming of alpha-mannosidase mRNA sequences in vitro by myxomycete group IC1 and IE ribozymes.
FEBS J. 2006 Jun;273(12):2789-800. doi: 10.1111/j.1742-4658.2006.05295.x.
5
Design and Experimental Evolution of trans-Splicing Group I Intron Ribozymes.
Molecules. 2017 Jan 2;22(1):75. doi: 10.3390/molecules22010075.
6
Group I Intron-Based Therapeutics Through Trans-Splicing Reaction.
Prog Mol Biol Transl Sci. 2018;159:79-100. doi: 10.1016/bs.pmbts.2018.07.001. Epub 2018 Aug 9.
7
Heterodimerization of Group I Ribozymes Enabling Exon Recombination through Pairs of Cooperative trans-Splicing Reactions.
Chembiochem. 2017 Aug 17;18(16):1659-1667. doi: 10.1002/cbic.201700053. Epub 2017 Jul 4.
10
Circular ribozymes generated in Escherichia coli using group I self-splicing permuted intron-exon sequences.
J Biol Chem. 1996 Oct 18;271(42):26081-7. doi: 10.1074/jbc.271.42.26081.

引用本文的文献

1
Repair of Mutated mRNA with Trans-Splicing Group I Intron Ribozymes.
Cancers (Basel). 2025 Aug 23;17(17):2749. doi: 10.3390/cancers17172749.
2
Importance of pre-mRNA splicing and its study tools in plants.
Adv Biotechnol (Singap). 2024 Feb 8;2(1):4. doi: 10.1007/s44307-024-00009-9.
3
Programmable trans-splicing riboregulators for complex cellular logic computation.
Nat Chem Biol. 2025 May;21(5):758-766. doi: 10.1038/s41589-024-01781-4. Epub 2025 Jan 2.
4
Efficient circular RNA synthesis for potent rolling circle translation.
Nat Biomed Eng. 2024 Dec 13. doi: 10.1038/s41551-024-01306-3.
6
Therapeutic applications of trans-splicing.
Br Med Bull. 2020 Dec 15;136(1):4-20. doi: 10.1093/bmb/ldaa028.
7
Intracellular selection of trans-cleaving hammerhead ribozymes.
Nucleic Acids Res. 2019 Mar 18;47(5):2514-2522. doi: 10.1093/nar/gkz018.
8
RNA Trans-Splicing Modulation via Antisense Molecule Interference.
Int J Mol Sci. 2018 Mar 7;19(3):762. doi: 10.3390/ijms19030762.
9
Site-Selective RNA Splicing Nanozyme: DNAzyme and RtcB Conjugates on a Gold Nanoparticle.
ACS Chem Biol. 2018 Jan 19;13(1):215-224. doi: 10.1021/acschembio.7b00437. Epub 2017 Dec 19.
10
Design and Experimental Evolution of trans-Splicing Group I Intron Ribozymes.
Molecules. 2017 Jan 2;22(1):75. doi: 10.3390/molecules22010075.

本文引用的文献

1
RNA reprogramming and repair based on trans-splicing group I ribozymes.
N Biotechnol. 2010 Jul 31;27(3):194-203. doi: 10.1016/j.nbt.2010.02.013. Epub 2010 Feb 26.
2
Evolutionary origins and directed evolution of RNA.
Int J Biochem Cell Biol. 2009 Feb;41(2):254-65. doi: 10.1016/j.biocel.2008.08.015. Epub 2008 Aug 19.
4
Trans insertion-splicing: ribozyme-catalyzed insertion of targeted sequences into RNAs.
Biochemistry. 2005 Aug 9;44(31):10702-10. doi: 10.1021/bi0504815.
5
Specific regression of human cancer cells by ribozyme-mediated targeted replacement of tumor-specific transcript.
Mol Ther. 2005 Nov;12(5):824-34. doi: 10.1016/j.ymthe.2005.06.096. Epub 2005 Jul 25.
6
Kinetics and thermodynamics make different contributions to RNA folding in vitro and in yeast.
Mol Cell. 2005 Jul 1;19(1):27-37. doi: 10.1016/j.molcel.2005.05.025.
7
Single-cell detection of trans-splicing ribozyme in vivo activity.
J Am Chem Soc. 2004 Jun 16;126(23):7158-9. doi: 10.1021/ja049144u.
8
Optimization and application of the group I ribozyme trans-splicing reaction.
Methods Mol Biol. 2004;252:359-71. doi: 10.1385/1-59259-746-7:359.
9
Artificial modules for enhancing rate constants of a Group I intron ribozyme without a P4-P6 core element.
J Biol Chem. 2004 Jan 2;279(1):540-6. doi: 10.1074/jbc.M305499200. Epub 2003 Oct 21.
10
Nuclear synthesis of cytoplasmic ribonucleic acid in Amoeba proteus.
J Biophys Biochem Cytol. 1959 Oct;6(2):203-6. doi: 10.1083/jcb.6.2.203.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验