Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
RNA. 2012 Mar;18(3):581-9. doi: 10.1261/rna.028472.111. Epub 2012 Jan 24.
Group I intron ribozymes can repair mutated mRNAs by replacing the 3'-terminal portion of the mRNA with their own 3'-exon. This trans-splicing reaction has the potential to treat genetic disorders and to selectively kill cancer cells or virus-infected cells. However, these ribozymes have not yet been used in therapy, partially due to a low in vivo trans-splicing efficiency. Previous strategies to improve the trans-splicing efficiencies focused on designing and testing individual ribozyme constructs. Here we describe a method that selects the most efficient ribozymes from millions of ribozyme variants. This method uses an in vivo rescue assay where the mRNA of an inactivated antibiotic resistance gene is repaired by trans-splicing group I intron ribozymes. Bacterial cells that express efficient trans-splicing ribozymes are able to grow on medium containing the antibiotic chloramphenicol. We randomized a 5'-terminal sequence of the Tetrahymena thermophila group I intron and screened a library with 9 × 10⁶ ribozyme variants for the best trans-splicing activity. The resulting ribozymes showed increased trans-splicing efficiency and help the design of efficient trans-splicing ribozymes for different sequence contexts. This in vivo selection method can now be used to optimize any sequence in trans-splicing ribozymes.
I 类内含子核酶可以通过用自身的 3' - 外显子替换 mRNA 的 3' - 末端部分来修复突变的 mRNA。这种反式剪接反应有可能治疗遗传疾病,并选择性地杀死癌细胞或病毒感染的细胞。然而,这些核酶尚未在治疗中使用,部分原因是体内反式剪接效率低。以前提高反式剪接效率的策略主要集中在设计和测试单个核酶构建体上。在这里,我们描述了一种从数百万个核酶变体中选择最有效核酶的方法。该方法使用体内拯救测定,其中失活抗生素抗性基因的 mRNA 通过 I 类内含子核酶的反式剪接进行修复。能够表达有效反式剪接核酶的细菌细胞能够在含有抗生素氯霉素的培养基中生长。我们随机化了嗜热四膜虫 I 类内含子的 5' - 末端序列,并对含有 9 × 10⁶ 核酶变体的文库进行了筛选,以获得最佳的反式剪接活性。所得核酶显示出提高的反式剪接效率,并有助于设计用于不同序列背景的高效反式剪接核酶。这种体内选择方法现在可用于优化反式剪接核酶中的任何序列。