Suppr超能文献

位点选择性RNA剪接纳米酶:金纳米颗粒上的脱氧核酶与RtcB缀合物

Site-Selective RNA Splicing Nanozyme: DNAzyme and RtcB Conjugates on a Gold Nanoparticle.

作者信息

Petree Jessica R, Yehl Kevin, Galior Kornelia, Glazier Roxanne, Deal Brendan, Salaita Khalid

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30322, United States.

出版信息

ACS Chem Biol. 2018 Jan 19;13(1):215-224. doi: 10.1021/acschembio.7b00437. Epub 2017 Dec 19.

Abstract

Modifying RNA through either splicing or editing is a fundamental biological process for creating protein diversity from the same genetic code. Developing novel chemical biology tools for RNA editing has potential to transiently edit genes and to provide a better understanding of RNA biochemistry. Current techniques used to modify RNA include the use of ribozymes, adenosine deaminase, and tRNA endonucleases. Herein, we report a nanozyme that is capable of splicing virtually any RNA stem-loop. This nanozyme is comprised of a gold nanoparticle functionalized with three enzymes: two catalytic DNA strands with ribonuclease function and an RNA ligase. The nanozyme cleaves and then ligates RNA targets, performing a splicing reaction that is akin to the function of the spliceosome. Our results show that the three-enzyme reaction can remove a 19 nt segment from a 67 nt RNA loop with up to 66% efficiency. The complete nanozyme can perform the same splice reaction at 10% efficiency. These splicing nanozymes represent a new promising approach for gene manipulation that has potential for applications in living cells.

摘要

通过剪接或编辑来修饰RNA是一个基本的生物学过程,可从相同的遗传密码中创造蛋白质多样性。开发用于RNA编辑的新型化学生物学工具具有瞬时编辑基因并更好地理解RNA生物化学的潜力。目前用于修饰RNA的技术包括使用核酶、腺苷脱氨酶和tRNA内切核酸酶。在此,我们报道了一种几乎能够剪接任何RNA茎环的纳米酶。这种纳米酶由一个用三种酶功能化的金纳米颗粒组成:两条具有核糖核酸酶功能的催化DNA链和一种RNA连接酶。该纳米酶切割然后连接RNA靶标,进行类似于剪接体功能的剪接反应。我们的结果表明,三酶反应可以从67 nt的RNA环中去除19 nt的片段,效率高达66%。完整的纳米酶可以以10%的效率进行相同的剪接反应。这些剪接纳米酶代表了一种新的有前途的基因操作方法,具有在活细胞中应用的潜力。

相似文献

1
Site-Selective RNA Splicing Nanozyme: DNAzyme and RtcB Conjugates on a Gold Nanoparticle.
ACS Chem Biol. 2018 Jan 19;13(1):215-224. doi: 10.1021/acschembio.7b00437. Epub 2017 Dec 19.
2
RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo.
J Biol Chem. 2011 Sep 2;286(35):30253-30257. doi: 10.1074/jbc.C111.274597. Epub 2011 Jul 11.
4
Application of RtcB ligase to monitor self-cleaving ribozyme activity by RNA-seq.
Biol Chem. 2022 Jan 13;403(8-9):705-715. doi: 10.1515/hsz-2021-0408. Print 2022 Jul 26.
5
Rewriting the rules for end joining via enzymatic splicing of DNA 3'-PO4 and 5'-OH ends.
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20437-42. doi: 10.1073/pnas.1314289110. Epub 2013 Nov 11.
6
Novel mechanism of RNA repair by RtcB via sequential 2',3'-cyclic phosphodiesterase and 3'-Phosphate/5'-hydroxyl ligation reactions.
J Biol Chem. 2011 Dec 16;286(50):43134-43. doi: 10.1074/jbc.M111.302133. Epub 2011 Oct 31.
7
The bacterial RNA ligase RtcB accelerates the repair process of fragmented rRNA upon releasing the antibiotic stress.
Sci China Life Sci. 2020 Feb;63(2):251-258. doi: 10.1007/s11427-018-9405-y. Epub 2019 Jun 26.
8
tRNA ligase catalyzes the GTP-dependent ligation of RNA with 3'-phosphate and 5'-hydroxyl termini.
Biochemistry. 2012 Feb 21;51(7):1333-5. doi: 10.1021/bi201921a. Epub 2012 Feb 7.
9
Structural and mechanistic insights into guanylylation of RNA-splicing ligase RtcB joining RNA between 3'-terminal phosphate and 5'-OH.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15235-40. doi: 10.1073/pnas.1213795109. Epub 2012 Sep 4.
10
RNA ligase RtcB splices 3'-phosphate and 5'-OH ends via covalent RtcB-(histidinyl)-GMP and polynucleotide-(3')pp(5')G intermediates.
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6072-7. doi: 10.1073/pnas.1201207109. Epub 2012 Apr 2.

引用本文的文献

1
Exploring the Subcellular Localization and Degradation of Spherical Nucleic Acids Using Fluorescence Lifetime Imaging Microscopy.
ACS Nano. 2025 Jun 24;19(24):21983-21996. doi: 10.1021/acsnano.5c00177. Epub 2025 Jun 9.
2
Unleashing the potential of catalytic RNAs to combat mis-spliced transcripts.
Front Bioeng Biotechnol. 2023 Nov 16;11:1244377. doi: 10.3389/fbioe.2023.1244377. eCollection 2023.
3
Nanodiscoidal Nucleic Acids for Gene Regulation.
ACS Chem Biol. 2023 Nov 17;18(11):2349-2367. doi: 10.1021/acschembio.3c00038. Epub 2023 Nov 1.
4
A computational approach to identify efficient RNA cleaving 10-23 DNAzymes.
NAR Genom Bioinform. 2023 Jan 10;5(1):lqac098. doi: 10.1093/nargab/lqac098. eCollection 2023 Mar.
6
Nanozymes-recent development and biomedical applications.
J Nanobiotechnology. 2022 Feb 22;20(1):92. doi: 10.1186/s12951-022-01295-y.
7
Gene Regulation Using Nanodiscs Modified with HIF-1-α Antisense Oligonucleotides.
Bioconjug Chem. 2022 Feb 16;33(2):279-293. doi: 10.1021/acs.bioconjchem.1c00505. Epub 2022 Jan 26.
9
Gold Nanoparticles for Vectorization of Nucleic Acids for Cancer Therapeutics.
Molecules. 2020 Jul 31;25(15):3489. doi: 10.3390/molecules25153489.
10
DNA Nanotechnology as an Emerging Tool to Study Mechanotransduction in Living Systems.
Small. 2019 Jun;15(26):e1900961. doi: 10.1002/smll.201900961. Epub 2019 May 9.

本文引用的文献

2
Knockdown of TNF-α by DNAzyme gold nanoparticles as an anti-inflammatory therapy for myocardial infarction.
Biomaterials. 2016 Mar;83:12-22. doi: 10.1016/j.biomaterials.2015.12.022. Epub 2015 Dec 21.
3
Coevolution of RtcB and Archease created a multiple-turnover RNA ligase.
RNA. 2015 Nov;21(11):1866-72. doi: 10.1261/rna.052639.115. Epub 2015 Sep 18.
4
Antisense oligonucleotides in therapy for neurodegenerative disorders.
Adv Drug Deliv Rev. 2015 Jun 29;87:90-103. doi: 10.1016/j.addr.2015.03.008. Epub 2015 Mar 20.
5
The RtcB RNA ligase is an essential component of the metazoan unfolded protein response.
EMBO Rep. 2014 Dec;15(12):1278-85. doi: 10.15252/embr.201439531. Epub 2014 Nov 3.
6
Spliceozymes: ribozymes that remove introns from pre-mRNAs in trans.
PLoS One. 2014 Jul 11;9(7):e101932. doi: 10.1371/journal.pone.0101932. eCollection 2014.
7
Nano-gold as artificial enzymes: hidden talents.
Adv Mater. 2014 Jul 2;26(25):4200-17. doi: 10.1002/adma.201400238. Epub 2014 Apr 1.
8
Catalytically active nanomaterials: a promising candidate for artificial enzymes.
Acc Chem Res. 2014 Apr 15;47(4):1097-105. doi: 10.1021/ar400250z. Epub 2014 Jan 17.
9
Correcting mutations by RNA repair.
N Engl J Med. 2014 Jan 9;370(2):172-4. doi: 10.1056/NEJMcibr1313514.
10
Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing.
Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18285-90. doi: 10.1073/pnas.1306243110. Epub 2013 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验