Suppr超能文献

晶体结构是否排除了基于结构的虚拟筛选中 G 蛋白偶联受体理论模型的需要?

Do crystal structures obviate the need for theoretical models of GPCRs for structure-based virtual screening?

机构信息

Laboratory for Molecular Modeling, Division of Medicinal Chemistry and Natural Products and Carolina Exploratory Center for Cheminformatics Research, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360, USA.

出版信息

Proteins. 2012 Jun;80(6):1503-21. doi: 10.1002/prot.24035. Epub 2012 Mar 13.

Abstract

Recent highly expected structural characterizations of agonist-bound and antagonist-bound beta-2 adrenoreceptor (β2AR) by X-ray crystallography have been widely regarded as critical advances to enable more effective structure-based discovery of GPCRs ligands. It appears that this very important development may have undermined many previous efforts to develop 3D theoretical models of GPCRs. To address this question directly, we have compared several historical β2AR models versus the inactive state and nanobody-stabilized active state of β2AR crystal structures in terms of their structural similarity and effectiveness of use in virtual screening for β2AR specific agonists and antagonists. Theoretical models, incluing both homology and de novo types, were collected from five different groups who have published extensively in the field of GPCRs modeling. All models were built before X-ray structures became available. In general, β2AR theoretical models differ significantly from the crystal structure in terms of TMH definition and the global packing. Nevertheless, surprisingly, several models afforded hit rates resulting from virtual screening of large chemical library enriched by known β2AR ligands that exceeded those using X-ray structures. The hit rates were particularly higher for agonists. Furthemore, the screening performance of models is associated with local structural quality, such as the RMSDs for binding pocket residues and the ability to capture accurately, most if not all critical protein/ligand interactions. These results suggest that carefully built models of GPCRs could capture critical chemical and structural features of the binding pocket, and thus may be even more useful for practical structure-based drug discovery than X-ray structures.

摘要

最近,通过 X 射线晶体学对激动剂结合和拮抗剂结合的β-2 肾上腺素能受体(β2AR)进行的备受期待的结构特征描述被广泛认为是实现更有效的基于结构的 GPCR 配体发现的关键进展。看来,这一非常重要的发展可能破坏了许多以前开发 GPCR 三维理论模型的努力。为了直接解决这个问题,我们比较了几个历史上的β2AR 模型与β2AR 晶体结构的非活性状态和纳米体稳定的活性状态,比较它们在虚拟筛选β2AR 特异性激动剂和拮抗剂方面的结构相似性和有效性。理论模型,包括同源和从头类型,都是从五个在 GPCR 建模领域广泛发表文章的不同小组中收集的。所有模型都是在 X 射线结构可用之前构建的。一般来说,β2AR 理论模型在 TMH 定义和全局包装方面与晶体结构有很大的不同。尽管如此,令人惊讶的是,一些模型在虚拟筛选富含已知β2AR 配体的大型化学文库时,获得的命中率超过了使用 X 射线结构的命中率。对于激动剂,命中率更高。此外,模型的筛选性能与局部结构质量相关,例如结合口袋残基的 RMSD 和准确捕捉大部分(如果不是全部)关键蛋白/配体相互作用的能力。这些结果表明,精心构建的 GPCR 模型可以捕获结合口袋的关键化学和结构特征,因此对于实际的基于结构的药物发现可能比 X 射线结构更有用。

相似文献

1
Do crystal structures obviate the need for theoretical models of GPCRs for structure-based virtual screening?
Proteins. 2012 Jun;80(6):1503-21. doi: 10.1002/prot.24035. Epub 2012 Mar 13.
2
Structure-Based Prediction of G-Protein-Coupled Receptor Ligand Function: A β-Adrenoceptor Case Study.
J Chem Inf Model. 2015 May 26;55(5):1045-61. doi: 10.1021/acs.jcim.5b00066. Epub 2015 May 1.
3
Structural features of β2 adrenergic receptor: crystal structures and beyond.
Mol Cells. 2015;38(2):105-11. doi: 10.14348/molcells.2015.2301. Epub 2014 Dec 24.
4
Mechanism of intracellular allosteric βAR antagonist revealed by X-ray crystal structure.
Nature. 2017 Aug 24;548(7668):480-484. doi: 10.1038/nature23652. Epub 2017 Aug 16.
6
Docking-based virtual screening for ligands of G protein-coupled receptors: not only crystal structures but also in silico models.
J Mol Graph Model. 2011 Feb;29(5):614-23. doi: 10.1016/j.jmgm.2010.11.005. Epub 2010 Nov 19.
7
Conformation guides molecular efficacy in docking screens of activated β-2 adrenergic G protein coupled receptor.
ACS Chem Biol. 2013 May 17;8(5):1018-26. doi: 10.1021/cb400103f. Epub 2013 Mar 21.
8
Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors.
J Chem Inf Model. 2015 Mar 23;55(3):700-8. doi: 10.1021/ci500729k. Epub 2015 Feb 25.
10
Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody.
Nature. 2013 Oct 24;502(7472):575-579. doi: 10.1038/nature12572. Epub 2013 Sep 22.

引用本文的文献

1
Homology Modeling of the G Protein-Coupled Receptors.
Methods Mol Biol. 2023;2627:167-181. doi: 10.1007/978-1-0716-2974-1_9.
3
A Chemosensory GPCR as a Potential Target to Control the Root-Knot Nematode Parasitism in Plants.
Molecules. 2019 Oct 22;24(20):3798. doi: 10.3390/molecules24203798.
8
Modelling three-dimensional protein structures for applications in drug design.
Drug Discov Today. 2014 Jul;19(7):890-7. doi: 10.1016/j.drudis.2013.10.027. Epub 2013 Nov 8.

本文引用的文献

1
Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment.
Structure. 2011 Aug 10;19(8):1108-26. doi: 10.1016/j.str.2011.05.012.
2
Structure and function of an irreversible agonist-β(2) adrenoceptor complex.
Nature. 2011 Jan 13;469(7329):236-40. doi: 10.1038/nature09665.
3
Structure of a nanobody-stabilized active state of the β(2) adrenoceptor.
Nature. 2011 Jan 13;469(7329):175-80. doi: 10.1038/nature09648.
4
Docking-based virtual screening for ligands of G protein-coupled receptors: not only crystal structures but also in silico models.
J Mol Graph Model. 2011 Feb;29(5):614-23. doi: 10.1016/j.jmgm.2010.11.005. Epub 2010 Nov 19.
5
Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists.
Science. 2010 Nov 19;330(6007):1066-71. doi: 10.1126/science.1194396. Epub 2010 Oct 7.
6
Predicting the accuracy of protein-ligand docking on homology models.
J Comput Chem. 2011 Jan 15;32(1):81-98. doi: 10.1002/jcc.21601.
8
Molecular docking screens using comparative models of proteins.
J Chem Inf Model. 2009 Nov;49(11):2512-27. doi: 10.1021/ci9003706.
9
Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008.
Nat Rev Drug Discov. 2009 Jun;8(6):455-63. doi: 10.1038/nrd2877.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验