Suppr超能文献

利用被笼闭的γ-氨基丁酸进行体内焦点癫痫的光控。

Optical control of focal epilepsy in vivo with caged γ-aminobutyric acid.

机构信息

Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55355, USA.

出版信息

Ann Neurol. 2012 Jan;71(1):68-75. doi: 10.1002/ana.22596.

Abstract

OBJECTIVE

There is enormous clinical potential in exploiting the spatial and temporal resolution of optical techniques to modulate pathophysiological neuronal activity, especially intractable focal epilepsy. We have recently utilized a new ruthenium-based caged compound, ruthenium-bipyridine-triphenylphosphine-γ-aminobutyric acid (RuBi-GABA), which releases GABA when exposed to blue light, to rapidly terminate paroxysmal activity in vitro and in vivo.

METHODS

The convulsant 4-aminopyridine was used to induce interictal activity and seizures in rat neocortical slices and anesthetized rats. We examined the effect of blue light, generated by a small, light-emitting diode (LED), on the frequency and duration of ictal activity in the presence and absence of RuBi-GABA.

RESULTS

Neither blue light alone, nor low concentrations of RuBi-GABA, affected interictal activity or baseline electrical activity in neocortical slices. However, brief, blue illumination of RuBi-GABA, using our LED, dramatically reduced extracellular spikes and bursts. More impressively, illumination of locally applied RuBi-GABA rapidly terminated in vivo seizures induced by topical application of 4-aminopyridine. The RuBi-GABA effect was blocked by the GABA(A) antagonist picrotoxin, but not duplicated by direct application of GABA.

INTERPRETATION

This is the first example of optical control of in vivo epilepsy, proving that there is sufficient cortical light penetration from an LED and diffusion of caged GABA to quickly terminate intense focal seizures. We are aware that many obstacles need to be overcome before this technique can be translated to patients, but at the moment, this represents a feasible method for harnessing optical techniques to fabricate an implantable device for the therapy of neocortical epilepsy.

摘要

目的

利用光学技术的空间和时间分辨率来调节病理生理学神经元活动,尤其是难治性局灶性癫痫,具有巨大的临床潜力。我们最近利用了一种新的基于钌的笼状化合物,即钌联吡啶-三苯基膦-γ-氨基丁酸(RuBi-GABA),当暴露于蓝光时,它会释放 GABA,从而迅速终止体外和体内的阵发性活动。

方法

使用 4-氨基吡啶使大鼠新皮层切片和麻醉大鼠产生间发性活动和癫痫发作。我们检查了蓝光(由小型发光二极管(LED)产生)对 RuBi-GABA 存在和不存在时癫痫发作的频率和持续时间的影响。

结果

单独的蓝光或低浓度的 RuBi-GABA 均不会影响新皮层切片中的间发性活动或基线电活动。然而,使用我们的 LED 短暂的蓝光照射 RuBi-GABA 可显著减少细胞外尖峰和爆发。更令人印象深刻的是,局部应用 RuBi-GABA 的光照可迅速终止 4-氨基吡啶局部应用诱导的体内癫痫发作。RuBi-GABA 效应被 GABA(A)拮抗剂 picrotoxin 阻断,但直接应用 GABA 不会复制该效应。

解释

这是首例在体癫痫的光学控制实例,证明从 LED 有足够的皮层光穿透和笼状 GABA 的扩散,可以快速终止强烈的局灶性癫痫发作。我们知道,在将该技术转化为患者之前,还需要克服许多障碍,但目前,这代表了利用光学技术制造用于治疗新皮层癫痫的可植入装置的可行方法。

相似文献

1
Optical control of focal epilepsy in vivo with caged γ-aminobutyric acid.
Ann Neurol. 2012 Jan;71(1):68-75. doi: 10.1002/ana.22596.
2
Photolysis of Caged-GABA Rapidly Terminates Seizures : Concentration and Light Intensity Dependence.
Front Neurol. 2017 May 18;8:215. doi: 10.3389/fneur.2017.00215. eCollection 2017.
3
Recording of Neural Activity With Modulation of Photolysis of Caged Compounds Using Microelectrode Arrays in Rats With Seizures.
IEEE Trans Biomed Eng. 2019 Nov;66(11):3080-3087. doi: 10.1109/TBME.2019.2900251. Epub 2019 Feb 20.
4
Optical suppression of experimental seizures in rat brain slices.
Epilepsia. 2010 Jan;51(1):127-35. doi: 10.1111/j.1528-1167.2009.02252.x. Epub 2009 Aug 8.
5
Optical triggered seizures using a caged 4-Aminopyridine.
Front Neurosci. 2015 Feb 4;9:25. doi: 10.3389/fnins.2015.00025. eCollection 2015.
6
Optical suppression of seizure-like activity with an LED.
Epilepsy Res. 2007 May;74(2-3):201-9. doi: 10.1016/j.eplepsyres.2007.03.009. Epub 2007 Apr 19.
7
Transmeningeal delivery of GABA to control neocortical seizures in rats.
Epilepsy Res. 2007 Jun;75(1):10-7. doi: 10.1016/j.eplepsyres.2007.03.014. Epub 2007 May 2.
8
Layer-specific pathways for the horizontal propagation of epileptiform discharges in neocortex.
Epilepsia. 1998 Jul;39(7):700-8. doi: 10.1111/j.1528-1157.1998.tb01154.x.
9
Photorelease of GABA with Visible Light Using an Inorganic Caging Group.
Front Neural Circuits. 2008 Aug 13;2:2. doi: 10.3389/neuro.04.002.2008. eCollection 2008.

引用本文的文献

1
Ex Vivo Feedback Control of Neurotransmission Using a Photocaged Adenosine A1 Receptor Agonist.
Int J Mol Sci. 2022 Aug 10;23(16):8887. doi: 10.3390/ijms23168887.
2
Optical Control of GABA Receptors with a Fulgimide-Based Potentiator.
Chemistry. 2020 Oct 6;26(56):12722-12727. doi: 10.1002/chem.202000710. Epub 2020 Sep 11.
3
Photopotentiation of the GABA receptor with caged diazepam.
Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):21176-21184. doi: 10.1073/pnas.1902383116. Epub 2019 Oct 1.
4
Neuronal photoactivation through second-harmonic near-infrared absorption by gold nanoparticles.
Light Sci Appl. 2018 Dec 5;7:100. doi: 10.1038/s41377-018-0103-0. eCollection 2018.
5
Photolysis of Caged-GABA Rapidly Terminates Seizures : Concentration and Light Intensity Dependence.
Front Neurol. 2017 May 18;8:215. doi: 10.3389/fneur.2017.00215. eCollection 2017.
6
A Visible-Light-Sensitive Caged Serotonin.
ACS Chem Neurosci. 2017 May 17;8(5):1036-1042. doi: 10.1021/acschemneuro.7b00083. Epub 2017 May 4.
8
Photoactivated inhibition of cathepsin K in a 3D tumor model.
Biol Chem. 2016 Jun 1;397(6):571-82. doi: 10.1515/hsz-2015-0274.
9
Optical triggered seizures using a caged 4-Aminopyridine.
Front Neurosci. 2015 Feb 4;9:25. doi: 10.3389/fnins.2015.00025. eCollection 2015.
10
How might novel technologies such as optogenetics lead to better treatments in epilepsy?
Adv Exp Med Biol. 2014;813:319-36. doi: 10.1007/978-94-017-8914-1_26.

本文引用的文献

1
Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy.
Epilepsia. 2010 May;51(5):899-908. doi: 10.1111/j.1528-1167.2010.02536.x. Epub 2010 Mar 17.
2
Optical suppression of experimental seizures in rat brain slices.
Epilepsia. 2010 Jan;51(1):127-35. doi: 10.1111/j.1528-1167.2009.02252.x. Epub 2009 Aug 8.
3
Optogenetic control of epileptiform activity.
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12162-7. doi: 10.1073/pnas.0901915106. Epub 2009 Jul 6.
4
NMDA potentiation by visible light in the presence of a fluorescent neurosteroid analogue.
J Physiol. 2009 Jun 15;587(Pt 12):2937-47. doi: 10.1113/jphysiol.2009.172700. Epub 2009 Apr 29.
5
Synchronous GABA-receptor-dependent potentials in limbic areas of the in-vitro isolated adult guinea pig brain.
Eur J Neurosci. 2009 Mar;29(5):911-20. doi: 10.1111/j.1460-9568.2009.06672.x.
6
Localized transmeningeal muscimol prevents neocortical seizures in rats and nonhuman primates: therapeutic implications.
Epilepsia. 2009 Apr;50(4):678-93. doi: 10.1111/j.1528-1167.2008.01914.x. Epub 2008 Dec 4.
7
Photorelease of GABA with Visible Light Using an Inorganic Caging Group.
Front Neural Circuits. 2008 Aug 13;2:2. doi: 10.3389/neuro.04.002.2008. eCollection 2008.
8
Outcomes of epilepsy surgery in adults and children.
Lancet Neurol. 2008 Jun;7(6):525-37. doi: 10.1016/S1474-4422(08)70109-1.
9
Photochemical control of endogenous ion channels and cellular excitability.
Nat Methods. 2008 Apr;5(4):331-8. doi: 10.1038/nmeth.1187. Epub 2008 Mar 2.
10
Transmeningeal delivery of GABA to control neocortical seizures in rats.
Epilepsy Res. 2007 Jun;75(1):10-7. doi: 10.1016/j.eplepsyres.2007.03.014. Epub 2007 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验