Suppr超能文献

稳定地将 ATPase 亚基整合到人蛋白酶体的 19 S 调节颗粒中需要核苷酸结合和 C 末端尾巴。

Stable incorporation of ATPase subunits into 19 S regulatory particle of human proteasome requires nucleotide binding and C-terminal tails.

机构信息

Department of Biochemistry, Yonsei University, Seoul, Korea.

出版信息

J Biol Chem. 2012 Mar 16;287(12):9269-79. doi: 10.1074/jbc.M111.316208. Epub 2012 Jan 24.

Abstract

The 26 S proteasome is a large multi-subunit protein complex that degrades ubiquitinated proteins in eukaryotic cells. Proteasome assembly is a complex process that involves formation of six- and seven-membered ring structures from homologous subunits. Here we report that the assembly of hexameric Rpt ring of the 19 S regulatory particle (RP) requires nucleotide binding but not ATP hydrolysis. Disruption of nucleotide binding to an Rpt subunit by mutation in the Walker A motif inhibits the assembly of the Rpt ring without affecting heterodimer formation with its partner Rpt subunit. Coexpression of the base assembly chaperones S5b and PAAF1 with mutant Rpt1 and Rpt6, respectively, relieves assembly inhibition of mutant Rpts by facilitating their interaction with adjacent Rpt dimers. The mutation in the Walker B motif which impairs ATP hydrolysis does not affect Rpt ring formation. Incorporation of a Walker B mutant Rpt subunit abrogates the ATPase activity of the 19 S RP, suggesting that failure of the mutant Rpt to undergo the conformational transition from an ATP-bound to an ADP-bound state impairs conformational changes in the other five wild-type Rpts in the Rpt ring. In addition, we demonstrate that the C-terminal tails of Rpt subunits possessing core particle (CP)-binding affinities facilitate the cellular assembly of the 19 S RP, implying that the 20 S CP may function as a template for base assembly in human cells. Taken together, these results suggest that the ATP-bound conformational state of an Rpt subunit with the exposed C-terminal tail is competent for cellular proteasome assembly.

摘要

26S 蛋白酶体是一种大型的多亚基蛋白复合物,可在真核细胞中降解泛素化的蛋白质。蛋白酶体的组装是一个复杂的过程,涉及到同源亚基形成六聚体和七聚体环结构。在这里,我们报告 19S 调节颗粒(RP)的六聚体 Rpt 环的组装需要核苷酸结合,但不需要 ATP 水解。通过突变 Walker A 基序破坏 Rpt 亚基中的核苷酸结合会抑制 Rpt 环的组装,而不影响与其伴侣 Rpt 亚基的异二聚体形成。分别与突变的 Rpt1 和 Rpt6 共表达基本组装伴侣 S5b 和 PAAF1,可以促进它们与相邻的 Rpt 二聚体相互作用,从而缓解突变 Rpt 的组装抑制。破坏 ATP 水解的 Walker B 基序突变不会影响 Rpt 环的形成。掺入 Walker B 突变的 Rpt 亚基会废除 19S RP 的 ATPase 活性,表明突变的 Rpt 无法从 ATP 结合状态转变为 ADP 结合状态,从而阻碍 Rpt 环中其他五个野生型 Rpt 的构象变化。此外,我们证明了具有核心颗粒(CP)结合亲和力的 Rpt 亚基的 C 末端尾巴有助于 19S RP 的细胞组装,这表明 20S CP 可能在人类细胞中作为基本组装的模板发挥作用。总之,这些结果表明具有暴露的 C 末端尾巴的 Rpt 亚基的 ATP 结合构象状态有利于细胞蛋白酶体的组装。

相似文献

2
Assembly manual for the proteasome regulatory particle: the first draft.
Biochem Soc Trans. 2010 Feb;38(Pt 1):6-13. doi: 10.1042/BST0380006.
4
Hexameric assembly of the proteasomal ATPases is templated through their C termini.
Nature. 2009 Jun 11;459(7248):866-70. doi: 10.1038/nature08065.
5
Reconfiguration of the proteasome during chaperone-mediated assembly.
Nature. 2013 May 23;497(7450):512-6. doi: 10.1038/nature12123. Epub 2013 May 5.
6
Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation.
Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7264-9. doi: 10.1073/pnas.1305782110. Epub 2013 Apr 15.
7
Structural basis for specific recognition of Rpt1p, an ATPase subunit of 26 S proteasome, by proteasome-dedicated chaperone Hsm3p.
J Biol Chem. 2012 Apr 6;287(15):12172-82. doi: 10.1074/jbc.M112.345876. Epub 2012 Feb 8.
9
An asymmetric interface between the regulatory and core particles of the proteasome.
Nat Struct Mol Biol. 2011 Oct 30;18(11):1259-67. doi: 10.1038/nsmb.2147.
10
Order of the proteasomal ATPases and eukaryotic proteasome assembly.
Cell Biochem Biophys. 2011 Jun;60(1-2):13-20. doi: 10.1007/s12013-011-9178-4.

引用本文的文献

1
The Role of the Ubiquitin System in Eye Diseases.
Life (Basel). 2025 Mar 20;15(3):504. doi: 10.3390/life15030504.
3
Expanded Coverage of the 26S Proteasome Conformational Landscape Reveals Mechanisms of Peptidase Gating.
Cell Rep. 2018 Jul 31;24(5):1301-1315.e5. doi: 10.1016/j.celrep.2018.07.004.
4
Phosphatase UBLCP1 controls proteasome assembly.
Open Biol. 2017 May;7(5). doi: 10.1098/rsob.170042.
5
Nucleotide-dependent switch in proteasome assembly mediated by the Nas6 chaperone.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1548-1553. doi: 10.1073/pnas.1612922114. Epub 2017 Jan 30.
6
Structural basis for dynamic regulation of the human 26S proteasome.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):12991-12996. doi: 10.1073/pnas.1614614113. Epub 2016 Oct 21.
7
The ubiquitin proteasomal system: a potential target for the management of Alzheimer's disease.
J Cell Mol Med. 2016 Jul;20(7):1392-407. doi: 10.1111/jcmm.12817. Epub 2016 Mar 29.
9
Alpha-ring Independent Assembly of the 20S Proteasome.
Sci Rep. 2015 Aug 19;5:13130. doi: 10.1038/srep13130.
10
Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase.
Nat Struct Mol Biol. 2013 Oct;20(10):1164-72. doi: 10.1038/nsmb.2659. Epub 2013 Sep 8.

本文引用的文献

1
C termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26 S proteasome.
J Biol Chem. 2011 Jul 29;286(30):26652-66. doi: 10.1074/jbc.M111.246793. Epub 2011 May 31.
2
Order of the proteasomal ATPases and eukaryotic proteasome assembly.
Cell Biochem Biophys. 2011 Jun;60(1-2):13-20. doi: 10.1007/s12013-011-9178-4.
4
Proteasome activators.
Mol Cell. 2011 Jan 7;41(1):8-19. doi: 10.1016/j.molcel.2010.12.020.
7
Assembly, structure, and function of the 26S proteasome.
Trends Cell Biol. 2010 Jul;20(7):391-401. doi: 10.1016/j.tcb.2010.03.007. Epub 2010 Apr 26.
8
Assembly manual for the proteasome regulatory particle: the first draft.
Biochem Soc Trans. 2010 Feb;38(Pt 1):6-13. doi: 10.1042/BST0380006.
10
Structural models for interactions between the 20S proteasome and its PAN/19S activators.
J Biol Chem. 2010 Jan 1;285(1):13-7. doi: 10.1074/jbc.C109.070425. Epub 2009 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验