Suppr超能文献

蛋白酶体 ATP 酶的顺序和真核蛋白酶体的组装。

Order of the proteasomal ATPases and eukaryotic proteasome assembly.

机构信息

Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8114, USA.

出版信息

Cell Biochem Biophys. 2011 Jun;60(1-2):13-20. doi: 10.1007/s12013-011-9178-4.

Abstract

The 26S proteasome is responsible for a large fraction of the regulated protein degradation in eukaryotic cells. The enzyme complex is composed of a 20S proteolytic core particle (CP) capped on one or both ends with a 19S regulatory particle (RP). The RP recognizes and unfolds substrates and translocates them into the CP. The RP can be further divided into lid and base subcomplexes. The base contains a ring of six AAA+ ATPases (Rpts) that directly abuts the CP and is responsible for unfolding substrates and driving them into the CP for proteolysis. Although 120 arrangements of the six different ATPases within the ring are possible in principle, they array themselves in one specific order. The high sequence and structural similarity between the Rpt subunits presents special challenges for their ordered association and incorporation into the assembling proteasome. In this review, we discuss recent advances in our understanding of proteasomal RP base biogenesis, with emphasis on potential specificity determinants in ring arrangement, and the implications of the ATPase ring arrangement for proteasome assembly.

摘要

26S 蛋白酶体负责真核细胞中大部分受调控的蛋白质降解。该酶复合物由一个 20S 蛋白酶核心颗粒(CP)组成,在其一端或两端加上一个 19S 调节颗粒(RP)。RP 识别并展开底物,并将其转运到 CP 中。RP 可以进一步分为盖子和基底亚复合物。基底包含一个六 AAA+ATP 酶(Rpts)的环,直接与 CP 相邻,负责展开底物并将其驱动到 CP 中进行蛋白酶解。尽管原则上环内的六个不同 ATP 酶有 120 种排列方式,但它们以特定的顺序排列。Rpt 亚基之间的高序列和结构相似性给它们的有序组装和纳入组装蛋白酶体带来了特殊的挑战。在这篇综述中,我们讨论了对蛋白酶体 RP 基底生物发生的理解的最新进展,重点讨论了环排列中的潜在特异性决定因素,以及 ATP 酶环排列对蛋白酶体组装的影响。

相似文献

1
Order of the proteasomal ATPases and eukaryotic proteasome assembly.
Cell Biochem Biophys. 2011 Jun;60(1-2):13-20. doi: 10.1007/s12013-011-9178-4.
3
Proteasomal AAA-ATPases: structure and function.
Biochim Biophys Acta. 2012 Jan;1823(1):67-82. doi: 10.1016/j.bbamcr.2011.07.009. Epub 2011 Jul 23.
5
Assembly manual for the proteasome regulatory particle: the first draft.
Biochem Soc Trans. 2010 Feb;38(Pt 1):6-13. doi: 10.1042/BST0380006.
6
Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base.
Cell. 2009 May 29;137(5):887-99. doi: 10.1016/j.cell.2009.04.061. Epub 2009 May 14.
7
Hexameric assembly of the proteasomal ATPases is templated through their C termini.
Nature. 2009 Jun 11;459(7248):866-70. doi: 10.1038/nature08065.
8
An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome.
Biochem Biophys Res Commun. 2009 Oct 16;388(2):228-33. doi: 10.1016/j.bbrc.2009.07.145. Epub 2009 Aug 3.
9
Assembly of the 20S proteasome.
Biochim Biophys Acta. 2014 Jan;1843(1):2-12. doi: 10.1016/j.bbamcr.2013.03.008. Epub 2013 Mar 16.
10
Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation.
Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7264-9. doi: 10.1073/pnas.1305782110. Epub 2013 Apr 15.

引用本文的文献

1
Mechanisms and regulation of substrate degradation by the 26S proteasome.
Nat Rev Mol Cell Biol. 2025 Feb;26(2):104-122. doi: 10.1038/s41580-024-00778-0. Epub 2024 Oct 3.
2
5
Structure and Function of the 26S Proteasome.
Annu Rev Biochem. 2018 Jun 20;87:697-724. doi: 10.1146/annurev-biochem-062917-011931. Epub 2018 Apr 13.
6
AAA-ATPases in Protein Degradation.
Front Mol Biosci. 2017 Jun 20;4:42. doi: 10.3389/fmolb.2017.00042. eCollection 2017.
7
Proteasome Structure and Assembly.
J Mol Biol. 2017 Nov 10;429(22):3500-3524. doi: 10.1016/j.jmb.2017.05.027. Epub 2017 Jun 3.
8
The Not4 RING E3 Ligase: A Relevant Player in Cotranslational Quality Control.
ISRN Mol Biol. 2013 Jan 21;2013:548359. doi: 10.1155/2013/548359. eCollection 2013.
9
N-Terminal Coiled-Coil Structure of ATPase Subunits of 26S Proteasome Is Crucial for Proteasome Function.
PLoS One. 2015 Jul 24;10(7):e0134056. doi: 10.1371/journal.pone.0134056. eCollection 2015.

本文引用的文献

2
The 20S proteasome as an assembly platform for the 19S regulatory complex.
J Mol Biol. 2009 Nov 27;394(2):320-8. doi: 10.1016/j.jmb.2009.09.038. Epub 2009 Sep 23.
3
An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome.
Biochem Biophys Res Commun. 2009 Oct 16;388(2):228-33. doi: 10.1016/j.bbrc.2009.07.145. Epub 2009 Aug 3.
5
Insights into the molecular architecture of the 26S proteasome.
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11943-7. doi: 10.1073/pnas.0905081106. Epub 2009 Jul 6.
7
Recognition and processing of ubiquitin-protein conjugates by the proteasome.
Annu Rev Biochem. 2009;78:477-513. doi: 10.1146/annurev.biochem.78.081507.101607.
9
Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii.
Mol Cell. 2009 May 14;34(4):473-84. doi: 10.1016/j.molcel.2009.04.021.
10
Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases.
Mol Cell. 2009 Jun 12;34(5):580-90. doi: 10.1016/j.molcel.2009.04.030. Epub 2009 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验