Haeufle D F B, Günther M, Blickhan R, Schmitt S
Universität Stuttgart, Institut für Sport- und Bewegungswissenschaft, Allmandring 28, D-70569 Stuttgart, Germany.
IEEE Int Conf Rehabil Robot. 2011;2011:5975336. doi: 10.1109/ICORR.2011.5975336.
Recently, the hyperbolic Hill-type force-velocity relation was derived from basic physical components. It was shown that a contractile element CE consisting of a mechanical energy source (active element AE), a parallel damper element (PDE), and a serial element (SE) exhibits operating points with hyperbolic force-velocity dependency. In this paper, the contraction dynamics of this CE concept were analyzed in a numerical simulation of quick release experiments against different loads. A hyperbolic force-velocity relation was found. The results correspond to measurements of the contraction dynamics of a technical prototype. Deviations from the theoretical prediction could partly be explained by the low stiffness of the SE, which was modeled analog to the metal spring in the hardware prototype. The numerical model and hardware prototype together, are a proof of this CE concept and can be seen as a well-founded starting point for the development of Hill-type artificial muscles. This opens up new vistas for the technical realization of natural movements with rehabilitation devices.
最近,双曲线型希尔力-速度关系是从基本物理组件推导出来的。结果表明,一个由机械能源(主动元件AE)、并联阻尼元件(PDE)和串联元件(SE)组成的收缩元件CE呈现出具有双曲线力-速度依赖性的工作点。在本文中,通过针对不同负载的快速释放实验的数值模拟,分析了这种CE概念的收缩动力学。发现了双曲线力-速度关系。结果与技术原型收缩动力学的测量结果相符。与理论预测的偏差部分可以通过SE的低刚度来解释,SE在硬件原型中是模拟金属弹簧建模的。数值模型和硬件原型共同证明了这种CE概念,并且可以被视为开发希尔型人工肌肉的有充分依据的起点。这为利用康复设备实现自然运动的技术实现开辟了新的前景。