Suppr超能文献

通过基于离散小波变换(DWT)的肌电图(EMG)特征主成分识别抓握类型。

Recognition of grasp types through principal components of DWT based EMG features.

作者信息

Kakoty Nayan M, Hazarika Shyamanta M

机构信息

School of Engineering, Tezpur University, Tezpur, India.

出版信息

IEEE Int Conf Rehabil Robot. 2011;2011:5975398. doi: 10.1109/ICORR.2011.5975398.

Abstract

With the advancement in machine learning and signal processing techniques, electromyogram (EMG) signals have increasingly gained importance in man-machine interaction. Multifingered hand prostheses using surface EMG for control has appeared in the market. However, EMG based control is still rudimentary, being limited to a few hand postures based on higher number of EMG channels. Moreover, control is non-intuitive, in the sense that the user is required to learn to associate muscle remnants actions to unrelated posture of the prosthesis. Herein lies the promise of a low channel EMG based grasp classification architecture for development of an embedded intelligent prosthetic controller. This paper reports classification of six grasp types used during 70% of daily living activities based on two channel forearm EMG. A feature vector through principal component analysis of discrete wavelet transform coefficients based features of the EMG signal is derived. Classification is through radial basis function kernel based support vector machine following preprocessing and maximum voluntary contraction normalization of EMG signals. 10-fold cross validation is done. We have achieved an average recognition rate of 97.5%.

摘要

随着机器学习和信号处理技术的进步,肌电图(EMG)信号在人机交互中越来越重要。使用表面肌电图进行控制的多指手部假肢已出现在市场上。然而,基于肌电图的控制仍然很初级,仅限于基于较多数量肌电图通道的少数手部姿势。此外,控制并不直观,因为用户需要学习将残留肌肉动作与假肢的不相关姿势联系起来。这就是基于低通道肌电图的抓握分类架构在开发嵌入式智能假肢控制器方面的前景所在。本文报告了基于两通道前臂肌电图对日常生活活动中70%所使用的六种抓握类型进行的分类。通过对肌电图信号基于离散小波变换系数的特征进行主成分分析得出特征向量。在对肌电图信号进行预处理和最大自主收缩归一化后,通过基于径向基函数核的支持向量机进行分类。进行了10折交叉验证。我们实现了97.5%的平均识别率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验