全基因组分析大肠杆菌中启动子介导的表型噪声。
A genome-wide analysis of promoter-mediated phenotypic noise in Escherichia coli.
机构信息
Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland.
出版信息
PLoS Genet. 2012 Jan;8(1):e1002443. doi: 10.1371/journal.pgen.1002443. Epub 2012 Jan 19.
Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a consequence, for any given protein, genetically identical organisms living in a constant environment will contain different amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as "phenotypic noise." In bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of promoter-mediated noise are correlated with genes' functional attributes, using data for over 60% of all promoters in Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the sequence of the promoter region alone.
基因表达受到随机扰动的影响,导致蛋白质产生速率的波动。因此,对于任何给定的蛋白质,生活在恒定环境中的遗传上相同的生物体将含有不同数量的特定蛋白质,从而导致不同的表型。这种现象被称为“表型噪声”。在细菌系统中,先前的研究表明,对于特定的基因,转录和翻译过程都会影响表型噪声。在这里,我们关注基因的启动子区域如何影响噪声,并使用大肠杆菌中超过 60%的所有启动子的数据,询问启动子介导的噪声水平是否与基因的功能属性相关。我们发现,必需基因和具有高度进化保守性的基因的启动子赋予低水平的噪声。我们还发现,噪声水平不能归因于不同基因在大肠杆菌基因组中花费的进化时间。与真核生物之前的结果相反,我们没有发现启动子介导的噪声与基因表达可塑性之间存在关联。这些结果与以下假设一致,即在细菌中,自然选择可以作用于降低基因表达噪声,并且其中一些噪声是通过启动子区域的序列单独控制的。
相似文献
PLoS Genet. 2012-1-19
Mol Biol Evol. 2024-9-4
PLoS Comput Biol. 2008-7-11
Science. 2013-12-6
G3 (Bethesda). 2013-12-9
引用本文的文献
Sci Rep. 2025-7-8
NAR Genom Bioinform. 2025-6-19
J Biol Eng. 2025-3-27
Front Microbiol. 2025-2-12
FEMS Microbiol Rev. 2025-1-14
J Mol Evol. 2024-12
本文引用的文献
Proc Natl Acad Sci U S A. 2011-4-4
PLoS Genet. 2010-11-4
Nature. 2009-11-5
Nat Biotechnol. 2009-10-4
Science. 2009-4-10
BMC Bioinformatics. 2009-4-9