Division of Dermatology, Michigan State University, College of Human Medicine, Grand Rapids, MI 49503, USA.
J Transl Med. 2012 Jan 25;10:15. doi: 10.1186/1479-5876-10-15.
Overcoming the notorious apoptotic resistance of melanoma cells remains a therapeutic challenge given dismal survival of patients with metastatic melanoma. However, recent clinical trials using a BRAF inhibitor revealed encouraging results for patients with advanced BRAF mutant bearing melanoma, but drug resistance accompanied by recovery of phospho-ERK (pERK) activity present challenges for this approach. While ERK1 and ERK2 are similar in amino acid composition and are frequently not distinguished in clinical reports, the possibility they regulate distinct biological functions in melanoma is largely unexplored.
Rather than indirectly inhibiting pERK by targeting upstream kinases such as BRAF or MEK, we directly (and near completely) reduced ERK1 and ERK2 using short hairpin RNAs (shRNAs) to achieve sustained inhibition of pERK1 and/or pERK2.
Using A375 melanoma cells containing activating BRAFV600E mutation, silencing ERK1 or ERK2 revealed some differences in their biological roles, but also shared roles by reduced cell proliferation, colony formation in soft agar and induced apoptosis. By contrast, chemical mediated inhibition of mutant BRAF (PLX4032) or MEK (PD0325901) triggered less killing of melanoma cells, although they did inhibit proliferation. Death of melanoma cells by silencing ERK1 and/or ERK2 was caspase dependent and accompanied by increased levels of Bak, Bad and Bim, with reduction in p-Bad and detection of activated Bax levels and loss of mitochondrial membrane permeability. Rare treatment resistant clones accompanied silencing of either ERK1 and/or ERK2. Unexpectedly, directly targeting ERK levels also led to reduction in upstream levels of BRAF, CRAF and pMEK, thereby reinforcing the importance of silencing ERK as regards killing and bypassing drug resistance.
Selectively knocking down ERK1 and/or ERK2 killed A375 melanoma cells and also increased the ability of PLX4032 to kill A375 cells. Thus, a new therapeutic window is open for future clinical trials in which agents targeting ERK1 and ERK2 should be considered in patients with melanoma.
黑色素瘤细胞的凋亡抵抗是一个治疗难题,转移性黑色素瘤患者的生存率仍然很低。然而,最近使用 BRAF 抑制剂的临床试验为携带 BRAF 突变的晚期黑色素瘤患者带来了令人鼓舞的结果,但药物耐药性伴随着磷酸化 ERK(pERK)活性的恢复,这对这种方法提出了挑战。虽然 ERK1 和 ERK2 在氨基酸组成上相似,并且在临床报告中通常不加以区分,但它们在黑色素瘤中调节不同生物学功能的可能性在很大程度上尚未得到探索。
我们没有通过靶向上游激酶(如 BRAF 或 MEK)间接抑制 pERK,而是使用短发夹 RNA(shRNA)直接(并且几乎完全)减少 ERK1 和 ERK2,从而实现 pERK1 和/或 pERK2 的持续抑制。
使用含有激活 BRAFV600E 突变的 A375 黑色素瘤细胞,沉默 ERK1 或 ERK2 揭示了它们在生物学作用上的一些差异,但也存在通过降低细胞增殖、软琼脂集落形成和诱导凋亡而共同发挥的作用。相比之下,化学介导的突变 BRAF(PLX4032)或 MEK(PD0325901)抑制剂对黑色素瘤细胞的杀伤作用较小,尽管它们确实抑制了增殖。沉默 ERK1 和/或 ERK2 导致黑色素瘤细胞死亡依赖于半胱天冬酶,并伴随着 Bak、Bad 和 Bim 水平的增加,p-Bad 减少,检测到激活的 Bax 水平和线粒体膜通透性丧失。沉默 ERK1 和/或 ERK2 时伴随着罕见的耐药克隆。出乎意料的是,直接靶向 ERK 水平也导致 BRAF、CRAF 和 pMEK 的上游水平降低,从而加强了沉默 ERK 在杀伤和绕过耐药性方面的重要性。
选择性敲低 ERK1 和/或 ERK2 可杀死 A375 黑色素瘤细胞,并增加 PLX4032 杀死 A375 细胞的能力。因此,为未来的临床试验开辟了一个新的治疗窗口,在这些临床试验中,应考虑针对 ERK1 和 ERK2 的药物治疗黑色素瘤患者。