Hotchkiss Brain and Libin Cardiovascular Research Institute, Department of Physiology and Pharmacology, University of Calgary, Canada.
Am J Physiol Cell Physiol. 2012 Apr 15;302(8):C1226-42. doi: 10.1152/ajpcell.00418.2011. Epub 2012 Jan 25.
When arteries constrict to agonists, the endothelium inversely responds, attenuating the initial vasomotor response. The basis of this feedback mechanism remains uncertain, although past studies suggest a key role for myoendothelial communication in the signaling process. The present study examined whether second messenger flux through myoendothelial gap junctions initiates a negative-feedback response in hamster retractor muscle feed arteries. We specifically hypothesized that when agonists elicit depolarization and a rise in second messenger concentration, inositol trisphosphate (IP(3)) flux activates a discrete pool of IP(3) receptors (IP(3)Rs), elicits localized endothelial Ca(2+) transients, and activates downstream effectors to moderate constriction. With use of integrated experimental techniques, this study provided three sets of supporting observations. Beginning at the functional level, we showed that blocking intermediate-conductance Ca(2+)-activated K(+) channels (IK) and Ca(2+) mobilization from the endoplasmic reticulum (ER) enhanced the contractile/electrical responsiveness of feed arteries to phenylephrine. Next, structural analysis confirmed that endothelial projections make contact with the overlying smooth muscle. These projections retained membranous ER networks, and IP(3)Rs and IK channels localized in or near this structure. Finally, Ca(2+) imaging revealed that phenylephrine induced discrete endothelial Ca(2+) events through IP(3)R activation. These events were termed recruitable Ca(2+) wavelets on the basis of their spatiotemporal characteristics. From these findings, we conclude that IP(3) flux across myoendothelial gap junctions is sufficient to induce focal Ca(2+) release from IP(3)Rs and activate a discrete pool of IK channels within or near endothelial projections. The resulting hyperpolarization feeds back on smooth muscle to moderate agonist-induced depolarization and constriction.
当动脉收缩到激动剂时,内皮细胞会产生相反的反应,从而减弱最初的血管运动反应。尽管过去的研究表明肌内皮通讯在信号传递过程中起着关键作用,但这种反馈机制的基础仍不确定。本研究检查了第二信使通过肌内皮缝隙连接的通量是否会引发仓鼠牵张肌供血动脉的负反馈反应。我们特别假设,当激动剂引起去极化和第二信使浓度升高时,三磷酸肌醇(IP3)通量会激活离散的 IP3 受体(IP3R)池,引发局部内皮 Ca2+瞬变,并激活下游效应器来调节收缩。通过使用综合实验技术,本研究提供了三组支持性观察结果。首先从功能水平上,我们表明阻断中间电导钙激活钾(IK)通道和内质网(ER)中的 Ca2+动员增强了供血动脉对苯肾上腺素的收缩/电反应性。其次,结构分析证实内皮突起与覆盖的平滑肌接触。这些突起保留了膜性 ER 网络,并且 IP3R 和 IK 通道定位于该结构内或附近。最后,钙成像显示苯肾上腺素通过 IP3R 激活诱导离散的内皮 Ca2+事件。这些事件根据其时空特征被称为可募集的 Ca2+波。根据这些发现,我们得出结论,肌内皮缝隙连接中的 IP3 通量足以诱导 IP3R 从 IP3 中释放出局域 Ca2+并激活内皮突起内或附近的离散 IK 通道池。由此产生的超极化反馈到平滑肌,以调节激动剂诱导的去极化和收缩。