Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA.
Biochem J. 2012 Apr 15;443(2):417-26. doi: 10.1042/BJ20112210.
Glutamine-dependent NAD+ synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD+ from NaAD+ (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 Å (1 Å=0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD+/ATP), substrate analogue {NaAD+/AMP-CPP (adenosine 5'-[α,β-methylene]triphosphate)} and intermediate analogues (NaAD+/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD+/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.
谷氨酰胺依赖型 NAD+合成酶是一种必需的酶,也是结核分枝杆菌 (mtuNadE) 的一种经过验证的药物靶点。它在合成酶活性位点催化 ATP 依赖性地将 NaAD+(烟酰胺腺嘌呤二核苷酸)和谷氨酸盐转化为 NAD+,同时在谷氨酰胺酶活性位点催化谷氨酸盐水解。一条长 40 Å(1 Å=0.1 nm)的氨隧道允许氨从一个活性位点转移到另一个活性位点。该酶显示出严格的动力学协同作用;然而,其调节机制尚不清楚。在本文中,我们报道了无活性谷氨酰胺酶 C176A 变体的apo 形式以及与底物(NaAD+/ATP)、底物类似物{NaAD+/AMP-CPP(腺苷 5'-[α,β-亚甲基]三磷酸)}和中间类似物(NaAD+/AMP/PPi)的三种合成酶配体复合物以及野生型 mtuNadE 在产物复合物(NAD+/AMP/PPi/谷氨酸盐)中的结构。这一系列结构提供了催化循环中氨隧道的快照,动力学和突变研究也支持了这一结果。在隧道中观察到三个主要的紧缩部位:(i)在靠近谷氨酰胺酶活性位点的入口处;(ii)在隧道中间;(iii)在靠近合成酶活性位点的末端。隧道的紧缩部位的数量和半径的变化在晶体结构中是明显的,并且与合成酶结构域的配体结合有关。这些结果为 mtuNadE 中氨在分子间隧道中的运输调节提供了新的见解。