LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 540, 76058, Le Havre, France.
J Chem Phys. 2012 Jan 21;136(3):031101. doi: 10.1063/1.3678310.
We report fully-quantum time-independent calculations of cross sections and rate coefficients for the collisional excitation and dissociation of D(2) by H, two astrophysically relevant processes. Our calculations are based on the recent H(3) global potential energy surface of Mielke et al. [J. Chem. Phys. 116, 4142 (2002)]. Results of exact three-dimensional calculations, i.e., including the reactive channels, are compared to pure inelastic two-dimensional calculations based on the rigid rotor approximation. A reasonable agreement is found between the two sets of inelastic cross sections over the whole energy range 10-9000 cm(-1). At the highest collisional energies, where the reactive channels are significant, the rigid rotor approach slightly overestimates the cross sections, as expected. At moderate collisional energies, however, the opposite behaviour is observed. The rigid rotor approach is found to be reliable at temperatures below ~500 K, with a significant but moderate contribution from reactive channels.
我们报告了完全量子非时变计算的截面和速率系数的碰撞激发和 D(2)的离解 H,两个天体物理相关的过程。我们的计算是基于最近的 H(3)米尔克等人的全球势能面。[J.化学物理。116,4142(2002)]。结果的精确三维计算,即包括反应通道,相比纯非弹性二维计算基于刚性转子近似。两个设置之间发现了合理的协议非弹性截面在整个能量范围 10-9000 厘米(-1)。在最高碰撞能量,其中反应通道是显著的,刚性转子方法略有高估截面,如预期。然而,在中等碰撞能量下,观察到相反的行为。刚性转子方法被发现是可靠的温度低于~500 K,具有显著但适度的贡献从反应通道。