Suppr超能文献

噬菌体 λ中关键创新的进化中的可重复性和偶然性。

Repeatability and contingency in the evolution of a key innovation in phage lambda.

机构信息

Department of Zoology, Michigan State University, East Lansing, MI 48824, USA.

出版信息

Science. 2012 Jan 27;335(6067):428-32. doi: 10.1126/science.1214449.

Abstract

The processes responsible for the evolution of key innovations, whereby lineages acquire qualitatively new functions that expand their ecological opportunities, remain poorly understood. We examined how a virus, bacteriophage λ, evolved to infect its host, Escherichia coli, through a novel pathway. Natural selection promoted the fixation of mutations in the virus's host-recognition protein, J, that improved fitness on the original receptor, LamB, and set the stage for other mutations that allowed infection through a new receptor, OmpF. These viral mutations arose after the host evolved reduced expression of LamB, whereas certain other host mutations prevented the phage from evolving the new function. This study shows the complex interplay between genomic processes and ecological conditions that favor the emergence of evolutionary innovations.

摘要

负责关键创新进化的过程,即谱系获得扩展其生态机会的定性新功能,仍然知之甚少。我们研究了病毒噬菌体 λ 如何通过一种新途径进化为感染其宿主大肠杆菌。自然选择促进了病毒宿主识别蛋白 J 中的突变的固定,这些突变提高了在原始受体 LamB 上的适应性,并为其他突变铺平了道路,这些突变允许通过新的受体 OmpF 进行感染。这些病毒突变发生在宿主减少 LamB 表达之后,而某些其他宿主突变则阻止了噬菌体进化出新功能。这项研究表明了基因组过程和有利于进化创新出现的生态条件之间的复杂相互作用。

相似文献

1
Repeatability and contingency in the evolution of a key innovation in phage lambda.
Science. 2012 Jan 27;335(6067):428-32. doi: 10.1126/science.1214449.
2
The role of side tail fibers during the infection cycle of phage lambda.
Virology. 2019 Jan 15;527:57-63. doi: 10.1016/j.virol.2018.11.005. Epub 2018 Nov 18.
3
Evolution. The role of coevolution.
Science. 2012 Jan 27;335(6067):410-1. doi: 10.1126/science.1217807.
5
Destabilizing mutations encode nongenetic variation that drives evolutionary innovation.
Science. 2018 Mar 30;359(6383):1542-1545. doi: 10.1126/science.aar1954.
7
Interaction of bacteriophage l with its E. coli receptor, LamB.
Viruses. 2012 Nov 15;4(11):3162-78. doi: 10.3390/v4113162.
8
Ecological speciation of bacteriophage lambda in allopatry and sympatry.
Science. 2016 Dec 9;354(6317):1301-1304. doi: 10.1126/science.aai8446. Epub 2016 Nov 24.
9
Distinct patterns of mutational sensitivity for resistance and maltodextrin transport in LamB.
Microb Genom. 2020 Apr;6(4). doi: 10.1099/mgen.0.000364. Epub 2020 Apr 2.
10
Structural mechanism of bacteriophage lambda tail's interaction with the bacterial receptor.
Nat Commun. 2024 May 17;15(1):4185. doi: 10.1038/s41467-024-48686-3.

引用本文的文献

1
Abiotic environmental conditions determine phage resistance outcomes in a salt-marsh bacterium.
Philos Trans R Soc Lond B Biol Sci. 2025 Sep 4;380(1934):20240071. doi: 10.1098/rstb.2024.0071.
2
Phage Therapy: Combating Evolution of Bacterial Resistance to Phages.
Viruses. 2025 Aug 8;17(8):1094. doi: 10.3390/v17081094.
3
Two receptor-targeting mechanisms of lambda-like siphophage Gifsy-1 of Salmonella Typhimurium.
PLoS Pathog. 2025 Jul 31;21(7):e1013352. doi: 10.1371/journal.ppat.1013352. eCollection 2025 Jul.
4
Revisiting phage tail spike architecture: evidence for undetected receptor-binding proteins in with non-contractile tails.
Front Microbiol. 2025 Jul 16;16:1625765. doi: 10.3389/fmicb.2025.1625765. eCollection 2025.
5
Phage and Endolysin Therapy Against Antibiotics Resistant Bacteria: From Bench to Bedside.
MedComm (2020). 2025 Jul 13;6(7):e70280. doi: 10.1002/mco2.70280. eCollection 2025 Jul.
6
Bacteriophage infection drives loss of β-lactam resistance in methicillin-resistant .
Elife. 2025 Jul 10;13:RP102743. doi: 10.7554/eLife.102743.
7
Optimizing phage therapy with artificial intelligence: a perspective.
Front Cell Infect Microbiol. 2025 May 27;15:1611857. doi: 10.3389/fcimb.2025.1611857. eCollection 2025.
9
Coevolutionary history of predation constrains the evolvability of antibiotic resistance in prey bacteria.
NPJ Antimicrob Resist. 2025 Jun 3;3(1):49. doi: 10.1038/s44259-025-00111-5.
10
Amino acid residues in the tail fiber differentiate the host specificity of bacteriophage.
J Virol. 2025 May 20;99(5):e0028925. doi: 10.1128/jvi.00289-25. Epub 2025 Apr 11.

本文引用的文献

1
Effects of bacteriophage traits on plaque formation.
BMC Microbiol. 2011 Aug 9;11:181. doi: 10.1186/1471-2180-11-181.
2
Statistical structure of host-phage interactions.
Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):E288-97. doi: 10.1073/pnas.1101595108. Epub 2011 Jun 27.
3
Second-order selection for evolvability in a large Escherichia coli population.
Science. 2011 Mar 18;331(6023):1433-6. doi: 10.1126/science.1198914.
4
Bacteria-phage coevolution and the emergence of generalist pathogens.
Am Nat. 2011 Jan;177(1):44-53. doi: 10.1086/657441. Epub 2010 Nov 30.
6
Identifying genetic markers of adaptation for surveillance of viral host jumps.
Nat Rev Microbiol. 2010 Nov;8(11):802-13. doi: 10.1038/nrmicro2440. Epub 2010 Oct 12.
8
Structures of the OmpF porin crystallized in the presence of foscholine-12.
Protein Sci. 2010 May;19(5):1117-25. doi: 10.1002/pro.369.
9
Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission.
J Virol. 2010 Apr;84(7):3134-46. doi: 10.1128/JVI.01394-09. Epub 2009 Nov 11.
10
Bacteriophages as model organisms for virus emergence research.
Trends Microbiol. 2009 Oct;17(10):450-7. doi: 10.1016/j.tim.2009.07.006. Epub 2009 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验