Suppr超能文献

伍德沃德-霍夫曼规则的重新诠释:概念密度泛函理论。

The Woodward-Hoffmann rules reinterpreted by conceptual density functional theory.

机构信息

Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium.

出版信息

Acc Chem Res. 2012 May 15;45(5):683-95. doi: 10.1021/ar200192t. Epub 2012 Jan 27.

Abstract

In an attempt to master the overwhelming amount of data on the properties of substances and their reactions, chemists scrutinize them for underlying common patterns. In modern times quantum mechanics (QM) has played a leading role in the understanding of chemical reactivity. In the late 1960s, Woodward and Hoffmann (WH) proposed one of the most successful and elegant approaches to interpret the outcome of an important type of reaction: they could predict the allowed or forbidden character of pericyclic reactions through inspection of the phase and symmetry of the orbitals of the reactants obtained by simple extended Hückel theory. Today much more powerful computational techniques, such as density functional theory (DFT), are available that yield highly accurate results even for large systems. By focusing on the electron density, ρ(r), a fundamental carrier of information compared with the much more complicated wave function in conventional QM, DFT became the computational workhorse for systems of ever increasing complexity. However, the need for the interpretation of computational (and obviously experimental) results remains, and "conceptual DFT" has provided the answer to this challenge within the context of DFT. This branch of DFT has given precision to chemical concepts such as electronegativity, hardness, and softness and has embedded them in a perturbational approach to chemical reactivity. Previously, researchers have successfully applied conceptual DFT to generalized acid-base and, more recently, to radical and redox reactions. In this Account, we present a conceptual DFT ansatz for pericyclic reactions, a stringent test for this density-only approach, because the density has trivial symmetry and no phase. A density response function is the key quantity in a first approach: the dual descriptor f((2))(r), the second derivative of the electron density with respect to the number of electrons. Overlapping regions of the dual descriptor of the reactant(s) with different or the same sign yield pictorial representations similar to the orbital phase and symmetry-based pictures in the WH formulation. In a second approach, a key quantity is the evolution of the chemical hardness at the onset of the reaction. This quantity makes contact with Zimmerman's alternative approach to the WH rules based on the aromaticity of the transition state. Using the dual descriptor and the initial hardness response, we reinterpret the WH results for the four types of pericyclic reactions (cycloadditions, electrocyclizations, and sigmatropic and chelotropic reactions), both thermodynamically and photochemically. We demonstrate that these two approaches, which require only simple quantum chemical procedures (overlapping densities and HOMO-LUMO gap type calculations along a few points of a model reaction coordinate), are intimately related through a relation that converts the local (i.e., position-dependent) dual descriptor into the global (i.e., position-independent) (initial) hardness response. Our results show that with a density-only based approach the WH rules can be reinterpreted, pointing to the fundamental importance of the electron density as carrier of information as highlighted in the basic theorems of DFT.

摘要

为了掌握物质性质及其反应的海量数据,化学家深入研究其中潜在的共同模式。在现代,量子力学(QM)在理解化学反应性方面发挥了主导作用。20 世纪 60 年代末,伍德沃德和霍夫曼(WH)提出了一种最成功和优雅的方法之一,可以解释一种重要类型反应的结果:他们可以通过简单的扩展休克尔理论来检查反应物轨道的相位和对称性,从而预测周环反应的允许或禁止特征。如今,更强大的计算技术(如密度泛函理论(DFT))已经可用,即使对于大型系统,也能得出非常准确的结果。通过聚焦于电子密度ρ(r),与传统 QM 中复杂得多的波函数相比,电子密度是一种基本的信息载体,DFT 成为越来越复杂系统的计算主力。然而,对计算(显然还有实验)结果的解释仍然是必要的,“概念性 DFT”在 DFT 的背景下为这一挑战提供了答案。DFT 的这一分支为电负性、硬度和软度等化学概念提供了精度,并将它们嵌入到化学反应性的微扰方法中。此前,研究人员已成功将概念性 DFT 应用于广义酸碱反应,最近又应用于自由基和氧化还原反应。在本报告中,我们提出了一种用于周环反应的概念性 DFT 方法,这是对这种仅基于密度方法的严格测试,因为密度具有平凡的对称性且没有相位。密度响应函数是第一种方法中的关键量:电子密度相对于电子数的二阶导数的双描述符 f((2))(r)。反应物的双描述符重叠区域具有不同或相同的符号,产生类似于 WH 公式中基于轨道相位和对称性的图像的图示表示。在第二种方法中,关键量是反应起始时化学硬度的演化。该量与齐默尔曼基于过渡态芳香性的 WH 规则的替代方法建立了联系。使用双描述符和初始硬度响应,我们重新解释了 WH 规则对四种周环反应(环加成、电环化、[1,5]-σ 迁移和[1,5]-σ 重排反应)的热力学和光化学结果。我们证明,这两种方法仅需要简单的量子化学程序(重叠密度和 HOMO-LUMO 间隙类型计算沿着模型反应坐标的几个点),通过一种将局部(即位置相关)双描述符转换为全局(即位置独立)(初始)硬度响应的关系紧密相关。我们的结果表明,通过仅基于密度的方法可以重新解释 WH 规则,这表明电子密度作为信息载体的基本重要性,如 DFT 的基本定理所强调的那样。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验