Suppr超能文献

一种通过结合 3D 图像形状配准和 Cine-PC MRI 速度数据来精确量化髌股关节软骨接触运动学的方法。

A methodology to accurately quantify patellofemoral cartilage contact kinematics by combining 3D image shape registration and cine-PC MRI velocity data.

机构信息

Functional and Applied Biomechanics, Department of Rehabilitation Medicine, NIH, Bethesda, MD 20892-1604, USA.

出版信息

J Biomech. 2012 Apr 5;45(6):1117-22. doi: 10.1016/j.jbiomech.2011.12.025. Epub 2012 Jan 28.

Abstract

Patellofemoral osteoarthritis and its potential precursor patellofemoral pain syndrome (PFPS) are common, costly, and debilitating diseases. PFPS has been shown to be associated with altered patellofemoral joint mechanics; however, an actual variation in joint contact stresses has not been established due to challenges in accurately quantifying in vivo contact kinematics (area and location). This study developed and validated a method for tracking dynamic, in vivo cartilage contact kinematics by combining three magnetic resonance imaging (MRI) techniques, cine-phase contrast (CPC), multi-plane cine (MPC), and 3D high-resolution static imaging. CPC and MPC data were acquired from 12 healthy volunteers while they actively extended/flexed their knee within the MRI scanner. Since no gold standard exists for the quantification of in vivo dynamic cartilage contact kinematics, the accuracy of tracking a single point (patellar origin relative to the femur) represented the accuracy of tracking the kinematics of an entire surface. The accuracy was determined by the average absolute error between the PF kinematics derived through registration of MPC images to a static model and those derived through integration of the CPC velocity data. The accuracy ranged from 0.47 mm to 0.77 mm for the patella and femur and from 0.68 mm to 0.86 mm for the patellofemoral joint. For purely quantifying joint kinematics, CPC remains an analytically simpler and more accurate (accuracy <0.33 mm) technique. However, for application requiring the tracking of an entire surface, such as quantifying cartilage contact kinematics, this combined imaging approach produces accurate results with minimal operator intervention.

摘要

髌股关节骨关节炎及其潜在的前驱病变髌股疼痛综合征(PFPS)较为常见,且治疗费用高昂,对患者的生活质量有较大影响。PFPS 被认为与髌股关节力学改变有关;然而,由于难以准确量化体内关节接触运动学(面积和位置),尚未确定关节接触应力的实际变化。本研究开发并验证了一种通过结合三种磁共振成像(MRI)技术(电影相位对比(CPC)、多平面电影(MPC)和 3D 高分辨率静态成像)来跟踪动态、体内软骨接触运动学的方法。在 MRI 扫描仪中,12 名健康志愿者主动屈伸膝关节时,采集 CPC 和 MPC 数据。由于目前尚无用于量化体内动态软骨接触运动学的金标准,因此跟踪单个点(髌骨相对于股骨的起点)的准确性代表了跟踪整个表面运动学的准确性。准确性通过将 MPC 图像与静态模型配准以得出 PF 运动学,与通过 CPC 速度数据积分得出的运动学之间的平均绝对误差来确定。髌骨和股骨的准确性范围为 0.47 毫米至 0.77 毫米,髌股关节的准确性范围为 0.68 毫米至 0.86 毫米。对于纯粹的关节运动学定量,CPC 仍然是一种分析更简单、更准确(准确性 <0.33 毫米)的技术。然而,对于需要跟踪整个表面的应用,例如量化软骨接触运动学,这种组合成像方法可在最小的人工干预下产生准确的结果。

相似文献

2
In vivo patellofemoral contact mechanics during active extension using a novel dynamic MRI-based methodology.
Osteoarthritis Cartilage. 2013 Dec;21(12):1886-1894. doi: 10.1016/j.joca.2013.08.023. Epub 2013 Sep 3.
4
Differences in patellofemoral contact mechanics associated with patellofemoral pain syndrome.
J Biomech. 2009 Dec 11;42(16):2802-7. doi: 10.1016/j.jbiomech.2009.07.028. Epub 2009 Nov 3.
5
A geometric approach to study the contact mechanisms in the patellofemoral joint of normal versus patellofemoral pain syndrome subjects.
Comput Methods Biomech Biomed Engin. 2015;18(4):391-400. doi: 10.1080/10255842.2013.803082. Epub 2013 Aug 19.
7
9
Validation of predicted patellofemoral mechanics in a finite element model of the healthy and cruciate-deficient knee.
J Biomech. 2016 Jan 25;49(2):302-9. doi: 10.1016/j.jbiomech.2015.12.020. Epub 2015 Dec 21.
10
Predicting three-dimensional patellofemoral kinematics from static imaging-based alignment measures.
J Orthop Res. 2013 Mar;31(3):441-7. doi: 10.1002/jor.22246. Epub 2012 Oct 23.

引用本文的文献

5
Advancing quantitative techniques to improve understanding of the skeletal structure-function relationship.
J Neuroeng Rehabil. 2018 Mar 20;15(1):25. doi: 10.1186/s12984-018-0368-9.
6
magnetic resonance imaging morphometry of the patella bone in South Indian population.
Anat Cell Biol. 2017 Jun;50(2):99-103. doi: 10.5115/acb.2017.50.2.99. Epub 2017 Jun 27.
7
New Techniques in MR Imaging of the Ankle and Foot.
Magn Reson Imaging Clin N Am. 2017 Feb;25(1):211-225. doi: 10.1016/j.mric.2016.08.009.
8
The effective quadriceps and patellar tendon moment arms relative to the tibiofemoral finite helical axis.
J Biomech. 2015 Nov 5;48(14):3737-42. doi: 10.1016/j.jbiomech.2015.04.003. Epub 2015 Apr 15.
9
Functional imaging in OA: role of imaging in the evaluation of tissue biomechanics.
Osteoarthritis Cartilage. 2014 Oct;22(10):1349-59. doi: 10.1016/j.joca.2014.05.016.
10
In vivo patellofemoral contact mechanics during active extension using a novel dynamic MRI-based methodology.
Osteoarthritis Cartilage. 2013 Dec;21(12):1886-1894. doi: 10.1016/j.joca.2013.08.023. Epub 2013 Sep 3.

本文引用的文献

1
Hamstrings loading contributes to lateral patellofemoral malalignment and elevated cartilage pressures: an in vitro study.
Clin Biomech (Bristol). 2011 Oct;26(8):841-6. doi: 10.1016/j.clinbiomech.2011.03.016. Epub 2011 May 4.
2
Computational wear simulation of patellofemoral articular cartilage during in vitro testing.
J Biomech. 2011 May 17;44(8):1507-13. doi: 10.1016/j.jbiomech.2011.03.012. Epub 2011 Mar 30.
3
Individuals with patellofemoral pain exhibit greater patellofemoral joint stress: a finite element analysis study.
Osteoarthritis Cartilage. 2011 Mar;19(3):287-94. doi: 10.1016/j.joca.2010.12.001. Epub 2010 Dec 21.
4
Assessing the accuracy and precision of musculoskeletal motion tracking using cine-PC MRI on a 3.0T platform.
J Biomech. 2011 Jan 4;44(1):193-7. doi: 10.1016/j.jbiomech.2010.08.029. Epub 2010 Sep 21.
5
Surrogate articular contact models for computationally efficient multibody dynamic simulations.
Med Eng Phys. 2010 Jul;32(6):584-94. doi: 10.1016/j.medengphy.2010.02.008. Epub 2010 Mar 16.
6
Correlating femoral shape with patellar kinematics in patients with patellofemoral pain.
J Orthop Res. 2010 Jul;28(7):865-72. doi: 10.1002/jor.21101.
7
Differences in patellofemoral contact mechanics associated with patellofemoral pain syndrome.
J Biomech. 2009 Dec 11;42(16):2802-7. doi: 10.1016/j.jbiomech.2009.07.028. Epub 2009 Nov 3.
8
Gender differences in the incidence and prevalence of patellofemoral pain syndrome.
Scand J Med Sci Sports. 2010 Oct;20(5):725-30. doi: 10.1111/j.1600-0838.2009.00996.x.
9
Patterns of patellofemoral articular cartilage wear in cadavers.
J Orthop Sports Phys Ther. 2009 Sep;39(9):675-83. doi: 10.2519/jospt.2009.2932.
10
Two-dimensional strain fields on the cross-section of the human patellofemoral joint under physiological loading.
J Biomech. 2009 Jun 19;42(9):1275-81. doi: 10.1016/j.jbiomech.2009.03.034. Epub 2009 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验