Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, United States.
Vascul Pharmacol. 2012 Mar-Apr;56(3-4):159-67. doi: 10.1016/j.vph.2012.01.004. Epub 2012 Jan 21.
Elevated plasma homocysteine (Hcy) is an independent risk factor for vascular disease and stroke in part by causing generalized endothelial dysfunction. A receptor that is sensitive to Hcy and its intracellular signaling systems has not been identified. β-catenin is a pleiotropic regulator of transcription and cell function. Using a brain microvascular endothelial cell line (bEnd.3), we tested the hypothesis that Hcy causes receptor-dependent nuclear translocation of β-catenin. Hcy increased phosphorylation of Y731 on vascular endothelial cadherin (VE-cadherin), a site involved in coupling β-catenin to VE-cadherin. This was blocked by inhibition of either metabotropic glutamate receptor 5 (mGluR5) or ionotropic glutamate receptor (NMDAr) and by shRNA knockdown of mGluR5. Expression of these receptors was confirmed by flow cytometry, immunohistochemistry, and western blotting. Directed pharmacology with specific agonists elucidated a signaling cascade where Hcy activates mGluR5 which activates NMDAr with subsequent PKC activation and uncoupling of the VE-cadherin/β-catenin complex. Moreover, Hcy caused a shift in localization of β-catenin from membrane-bound VE-cadherin to the cell nucleus, where it bound DNA, including a regulatory region of the gene for claudin-5, leading to reduced expression of claudin-5. Nuclear localization, DNA binding of β-catenin, and reduced claudin-5 expression were blocked by inhibition of mGluR5. Knockdown of mGluR5 expression with shRNA also rescued claudin-5 expression from the effects of Hcy treatment. These data uniquely identify mGluR5 as a master switch that drives β-catenin nuclear localization in vascular endothelium and regulates cell-cell coupling in response to elevated Hcy levels. These studies dissect a pharmacological opportunity for developing new therapeutic strategies in HHcy.
血浆同型半胱氨酸(Hcy)升高是血管疾病和中风的一个独立危险因素,部分原因是它导致了广泛的内皮功能障碍。尚未鉴定出对 Hcy 及其细胞内信号系统敏感的受体。β-连环蛋白是转录和细胞功能的多效调节剂。我们使用脑微血管内皮细胞系(bEnd.3),检验了 Hcy 导致β-连环蛋白受体依赖性核转位的假说。Hcy 增加了血管内皮钙黏蛋白(VE-cadherin)上 Y731 位点的磷酸化,该位点参与将β-连环蛋白与 VE-cadherin 偶联。这一过程被代谢型谷氨酸受体 5(mGluR5)或离子型谷氨酸受体(NMDAr)抑制剂以及 mGluR5 的 shRNA 敲低所阻断。通过流式细胞术、免疫组织化学和 Western blot 证实了这些受体的表达。特异性激动剂的定向药理学阐明了一条信号通路,其中 Hcy 激活 mGluR5,继而激活 NMDAr,导致 PKC 激活和 VE-cadherin/β-连环蛋白复合物解偶联。此外,Hcy 导致β-连环蛋白从膜结合的 VE-cadherin 到细胞核的位置发生转移,在细胞核内它与 DNA 结合,包括 Claudin-5 基因的调节区,导致 Claudin-5 的表达减少。mGluR5 抑制剂阻断了β-连环蛋白的核定位、DNA 结合和 Claudin-5 表达的减少。用 shRNA 敲低 mGluR5 表达也可挽救 Hcy 处理对 Claudin-5 表达的影响。这些数据独特地确定了 mGluR5 作为一个主开关,驱动血管内皮中β-连环蛋白的核定位,并调节细胞-细胞偶联以应对升高的 Hcy 水平。这些研究剖析了在高同型半胱氨酸血症(HHcy)中开发新治疗策略的药理学机会。