Suppr超能文献

一种最长公共子序列问题的超启发式算法。

A hyper-heuristic for the Longest Common Subsequence problem.

机构信息

Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156, Iran.

出版信息

Comput Biol Chem. 2012 Feb;36:42-54. doi: 10.1016/j.compbiolchem.2011.12.004. Epub 2011 Dec 30.

Abstract

The Longest Common Subsequence Problem is the problem of finding a longest string that is a subsequence of every member of a given set of strings. It has applications in FPGA circuit minimization, data compression, and bioinformatics, among others. The problem is NP-hard in its general form, which implies that no exact polynomial-time algorithm currently exists for the problem. Consequently, inexact algorithms have been proposed to obtain good, but not necessarily optimal, solutions in an affordable time. In this paper, a hyper-heuristic algorithm incorporated within a constructive beam search is proposed for the problem. The proposed hyper-heuristic is based on two basic heuristic functions, one of which is new in this paper, and determines dynamically which one to use for a given problem instance. The proposed algorithm is compared with state-of-the-art algorithms on simulated and real biological sequences. Extensive experimental reveals that the proposed hyper-heuristic is superior to the state-of-the-art methods with respect to the solution quality and the running-time.

摘要

最长公共子序列问题是指在给定字符串集合中,找出能够作为每个字符串子序列的最长字符串的问题。它在 FPGA 电路最小化、数据压缩和生物信息学等领域有应用。该问题在一般形式下是 NP 难的,这意味着目前对于该问题不存在精确的多项式时间算法。因此,已经提出了不精确算法来在可承受的时间内获得良好但不一定是最优的解决方案。本文提出了一种基于构造波束搜索的超启发式算法来解决该问题。所提出的超启发式基于两个基本启发式函数,其中一个是本文新提出的,它可以动态地确定在给定问题实例中使用哪一个启发式函数。将所提出的算法与模拟和真实生物序列上的最先进算法进行了比较。广泛的实验表明,在所提出的算法在解决方案质量和运行时间方面都优于最先进的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验