Suppr超能文献

一种用于最短公共超序列问题的改进型束搜索算法。

An enhanced beam search algorithm for the Shortest Common Supersequence Problem.

作者信息

Mousavi Sayyed Rasoul, Bahri Fateme, Tabataba Farzaneh Sadat

机构信息

Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.

出版信息

Eng Appl Artif Intell. 2012 Apr;25(3):457-467. doi: 10.1016/j.engappai.2011.08.006. Epub 2011 Sep 20.

Abstract

The Shortest Common Supersequence Problem asks to obtain a shortest string that is a supersequence of every member of a given set of strings. It has applications, among others, in data compression and oligonucleotide microarray production. The problem is NP-hard, and the existing exact solutions are impractical for large instances. In this paper, a new beam search algorithm is proposed for the problem, which employs a probabilistic heuristic and uses the dominance property to further prune the search space. The proposed algorithm is compared with three recent algorithms proposed for the problem on both random and biological sequences, outperforming them all by quickly providing solutions of higher average quality in all the experimental cases. The Java source and binary files of the proposed IBS_SCS algorithm and our implementation of the DR algorithm and all the random and real datasets used in this paper are freely available upon request.

摘要

最短公共超序列问题要求获得一个最短的字符串,该字符串是给定字符串集合中每个成员的超序列。它在数据压缩和寡核苷酸微阵列生产等方面有应用。该问题是NP难问题,现有的精确解对于大型实例不实用。本文针对该问题提出了一种新的束搜索算法,该算法采用概率启发式方法并利用支配属性进一步修剪搜索空间。将所提出的算法与最近针对该问题提出的三种算法在随机序列和生物序列上进行了比较,在所有实验案例中,该算法通过快速提供更高平均质量的解决方案而优于所有其他算法。所提出的IBS_SCS算法的Java源文件和二进制文件以及我们对DR算法的实现以及本文中使用的所有随机和真实数据集可根据要求免费提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcf8/7127599/6ae32b147759/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验