Suppr超能文献

具有NP维数的非凹惩罚似然法

Non-Concave Penalized Likelihood with NP-Dimensionality.

作者信息

Fan Jianqing, Lv Jinchi

机构信息

Princeton University and University of Southern California.

出版信息

IEEE Trans Inf Theory. 2011 Aug;57(8):5467-5484. doi: 10.1109/TIT.2011.2158486.

Abstract

Penalized likelihood methods are fundamental to ultra-high dimensional variable selection. How high dimensionality such methods can handle remains largely unknown. In this paper, we show that in the context of generalized linear models, such methods possess model selection consistency with oracle properties even for dimensionality of Non-Polynomial (NP) order of sample size, for a class of penalized likelihood approaches using folded-concave penalty functions, which were introduced to ameliorate the bias problems of convex penalty functions. This fills a long-standing gap in the literature where the dimensionality is allowed to grow slowly with the sample size. Our results are also applicable to penalized likelihood with the L(1)-penalty, which is a convex function at the boundary of the class of folded-concave penalty functions under consideration. The coordinate optimization is implemented for finding the solution paths, whose performance is evaluated by a few simulation examples and the real data analysis.

摘要

惩罚似然方法是超高维变量选择的基础。这类方法能够处理多高的维度在很大程度上仍然未知。在本文中,我们表明,在广义线性模型的背景下,对于一类使用折叠凹惩罚函数的惩罚似然方法,即使对于样本量的非多项式(NP)阶维度,这些方法也具有与神谕性质一致的模型选择一致性。引入折叠凹惩罚函数是为了改善凸惩罚函数的偏差问题。这填补了文献中一个长期存在的空白,即允许维度随样本量缓慢增长的情况。我们的结果也适用于具有L(1)惩罚的惩罚似然,L(1)惩罚在所考虑的折叠凹惩罚函数类的边界处是一个凸函数。通过坐标优化来实现求解路径,其性能通过一些模拟示例和实际数据分析进行评估。

相似文献

1
Non-Concave Penalized Likelihood with NP-Dimensionality.
IEEE Trans Inf Theory. 2011 Aug;57(8):5467-5484. doi: 10.1109/TIT.2011.2158486.
2
Robust learning for optimal treatment decision with NP-dimensionality.
Electron J Stat. 2016;10:2894-2921. doi: 10.1214/16-EJS1178. Epub 2016 Oct 13.
3
Penalized Composite Quasi-Likelihood for Ultrahigh-Dimensional Variable Selection.
J R Stat Soc Series B Stat Methodol. 2011 Jun;73(3):325-349. doi: 10.1111/j.1467-9868.2010.00764.x.
4
REGULARIZATION FOR COX'S PROPORTIONAL HAZARDS MODEL WITH NP-DIMENSIONALITY.
Ann Stat. 2011;39(6):3092-3120. doi: 10.1214/11-AOS911.
5
Folded concave penalized sparse linear regression: sparsity, statistical performance, and algorithmic theory for local solutions.
Math Program. 2017 Nov;166(1-2):207-240. doi: 10.1007/s10107-017-1114-y. Epub 2017 Feb 10.
6
Variable selection under multicollinearity using modified log penalty.
J Appl Stat. 2019 Jul 3;47(2):201-230. doi: 10.1080/02664763.2019.1637829. eCollection 2020.
7
Majorization Minimization by Coordinate Descent for Concave Penalized Generalized Linear Models.
Stat Comput. 2014 Sep;24(5):871-883. doi: 10.1007/s11222-013-9407-3.
8
STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION.
Ann Stat. 2014 Jun;42(3):819-849. doi: 10.1214/13-aos1198.
9
Designing penalty functions in high dimensional problems: The role of tuning parameters.
Electron J Stat. 2016;10(2):2312-2328. doi: 10.1214/16-EJS1169. Epub 2016 Aug 29.
10
One-step Sparse Estimates in Nonconcave Penalized Likelihood Models.
Ann Stat. 2008 Aug 1;36(4):1509-1533. doi: 10.1214/009053607000000802.

引用本文的文献

1
Variable selection for doubly robust causal inference.
Stat Interface. 2025;18(1):93-105. doi: 10.4310/sii.241023040813. Epub 2024 Oct 22.
2
A computationally efficient approach to false discovery rate control and power maximisation via randomisation and mirror statistic.
Stat Methods Med Res. 2025 Jun;34(6):1233-1253. doi: 10.1177/09622802251329768. Epub 2025 Mar 31.
3
HighDimMixedModels.jl: Robust high-dimensional mixed-effects models across omics data.
PLoS Comput Biol. 2025 Jan 13;21(1):e1012143. doi: 10.1371/journal.pcbi.1012143. eCollection 2025 Jan.
5
Are Latent Factor Regression and Sparse Regression Adequate?
J Am Stat Assoc. 2024;119(546):1076-1088. doi: 10.1080/01621459.2023.2169700. Epub 2023 Feb 14.
6
Fast Fusion Clustering via Double Random Projection.
Entropy (Basel). 2024 Apr 28;26(5):376. doi: 10.3390/e26050376.
7
Multi-task Learning with High-Dimensional Noisy Images.
J Am Stat Assoc. 2024;119(545):650-663. doi: 10.1080/01621459.2022.2140052. Epub 2022 Nov 17.
8
Penalized robust learning for optimal treatment regimes with heterogeneous individualized treatment effects.
J Appl Stat. 2023 Feb 20;51(6):1151-1170. doi: 10.1080/02664763.2023.2180167. eCollection 2024.
9
Estimation of multiple networks with common structures in heterogeneous subgroups.
J Multivar Anal. 2024 Jul;202. doi: 10.1016/j.jmva.2024.105298. Epub 2024 Feb 13.

本文引用的文献

3
One-step Sparse Estimates in Nonconcave Penalized Likelihood Models.
Ann Stat. 2008 Aug 1;36(4):1509-1533. doi: 10.1214/009053607000000802.
4
Discussion of "Sure Independence Screening for Ultra-High Dimensional Feature Space.
J R Stat Soc Series B Stat Methodol. 2008 Nov;70(5):903. doi: 10.1111/j.1467-9868.2008.00674.x.
5
High Dimensional Classification Using Features Annealed Independence Rules.
Ann Stat. 2008;36(6):2605-2637. doi: 10.1214/07-AOS504.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验