Suppr超能文献

用于超高维变量选择的惩罚复合拟似然法

Penalized Composite Quasi-Likelihood for Ultrahigh-Dimensional Variable Selection.

作者信息

Bradic Jelena, Fan Jianqing, Wang Weiwei

机构信息

Department of Operations Research and Financial Engineering, Princeton University, Princeton, USA.

出版信息

J R Stat Soc Series B Stat Methodol. 2011 Jun;73(3):325-349. doi: 10.1111/j.1467-9868.2010.00764.x.

Abstract

In high-dimensional model selection problems, penalized least-square approaches have been extensively used. This paper addresses the question of both robustness and efficiency of penalized model selection methods, and proposes a data-driven weighted linear combination of convex loss functions, together with weighted L(1)-penalty. It is completely data-adaptive and does not require prior knowledge of the error distribution. The weighted L(1)-penalty is used both to ensure the convexity of the penalty term and to ameliorate the bias caused by the L(1)-penalty. In the setting with dimensionality much larger than the sample size, we establish a strong oracle property of the proposed method that possesses both the model selection consistency and estimation efficiency for the true non-zero coefficients. As specific examples, we introduce a robust method of composite L1-L2, and optimal composite quantile method and evaluate their performance in both simulated and real data examples.

摘要

在高维模型选择问题中,惩罚最小二乘法已被广泛使用。本文探讨了惩罚模型选择方法的稳健性和效率问题,并提出了一种数据驱动的凸损失函数加权线性组合,以及加权L(1)惩罚。它完全是数据自适应的,不需要误差分布的先验知识。加权L(1)惩罚既用于确保惩罚项的凸性,又用于减轻L(1)惩罚引起的偏差。在维度远大于样本量的情况下,我们建立了所提方法的强似然性性质,该方法对于真实的非零系数同时具有模型选择一致性和估计效率。作为具体例子,我们引入了一种稳健的复合L1-L2方法和最优复合分位数方法,并在模拟和实际数据例子中评估了它们的性能。

相似文献

1
Penalized Composite Quasi-Likelihood for Ultrahigh-Dimensional Variable Selection.用于超高维变量选择的惩罚复合拟似然法
J R Stat Soc Series B Stat Methodol. 2011 Jun;73(3):325-349. doi: 10.1111/j.1467-9868.2010.00764.x.
2
Non-Concave Penalized Likelihood with NP-Dimensionality.具有NP维数的非凹惩罚似然法
IEEE Trans Inf Theory. 2011 Aug;57(8):5467-5484. doi: 10.1109/TIT.2011.2158486.
3
ADAPTIVE ROBUST VARIABLE SELECTION.自适应鲁棒变量选择
Ann Stat. 2014 Feb 1;42(1):324-351. doi: 10.1214/13-AOS1191.
7
M-estimation in high-dimensional linear model.高维线性模型中的M估计
J Inequal Appl. 2018;2018(1):225. doi: 10.1186/s13660-018-1819-3. Epub 2018 Aug 30.

引用本文的文献

7
Efficient Robust Estimation for Linear Models with Missing Response at Random.随机缺失响应线性模型的高效稳健估计
Scand Stat Theory Appl. 2018 Jun;45(2):366-381. doi: 10.1111/sjos.12296. Epub 2017 Aug 30.
8
Multitask Quantile Regression under the Transnormal Model.超正态模型下的多任务分位数回归
J Am Stat Assoc. 2016;111(516):1726-1735. doi: 10.1080/01621459.2015.1113973. Epub 2017 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验