Suppr超能文献

高维特征空间中变量选择的选择性概述

A Selective Overview of Variable Selection in High Dimensional Feature Space.

作者信息

Fan Jianqing, Lv Jinchi

机构信息

Frederick L. Moore '18 Professor of Finance, Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08544, USA (

出版信息

Stat Sin. 2010 Jan;20(1):101-148.

Abstract

High dimensional statistical problems arise from diverse fields of scientific research and technological development. Variable selection plays a pivotal role in contemporary statistical learning and scientific discoveries. The traditional idea of best subset selection methods, which can be regarded as a specific form of penalized likelihood, is computationally too expensive for many modern statistical applications. Other forms of penalized likelihood methods have been successfully developed over the last decade to cope with high dimensionality. They have been widely applied for simultaneously selecting important variables and estimating their effects in high dimensional statistical inference. In this article, we present a brief account of the recent developments of theory, methods, and implementations for high dimensional variable selection. What limits of the dimensionality such methods can handle, what the role of penalty functions is, and what the statistical properties are rapidly drive the advances of the field. The properties of non-concave penalized likelihood and its roles in high dimensional statistical modeling are emphasized. We also review some recent advances in ultra-high dimensional variable selection, with emphasis on independence screening and two-scale methods.

摘要

高维统计问题产生于科学研究和技术发展的各个领域。变量选择在当代统计学习和科学发现中起着关键作用。最佳子集选择方法的传统理念,可被视为惩罚似然的一种特殊形式,对于许多现代统计应用来说计算成本过高。在过去十年中,已经成功开发出其他形式的惩罚似然方法来应对高维问题。它们已被广泛应用于在高维统计推断中同时选择重要变量并估计其效应。在本文中,我们简要介绍高维变量选择在理论、方法和实现方面的最新进展。此类方法能够处理的维度限制是什么、惩罚函数的作用是什么以及统计性质是什么,这些问题迅速推动了该领域的发展。本文强调了非凹惩罚似然的性质及其在高维统计建模中的作用。我们还回顾了超高维变量选择方面的一些最新进展,重点是独立性筛选和双尺度方法。

相似文献

2
Sparse High Dimensional Models in Economics.经济学中的稀疏高维模型。
Annu Rev Econom. 2011 Sep;3:291-317. doi: 10.1146/annurev-economics-061109-080451.
3
A selective overview of feature screening for ultrahigh-dimensional data.超高维数据特征筛选的选择性概述。
Sci China Math. 2015 Oct;58(10):2033-2054. doi: 10.1007/s11425-015-5062-9. Epub 2015 Aug 22.
4
Non-Concave Penalized Likelihood with NP-Dimensionality.具有NP维数的非凹惩罚似然法
IEEE Trans Inf Theory. 2011 Aug;57(8):5467-5484. doi: 10.1109/TIT.2011.2158486.
8
Bayesian Methods for High Dimensional Linear Models.高维线性模型的贝叶斯方法
J Biom Biostat. 2013 Jun 1;1:005. doi: 10.4172/2155-6180.S1-005.

引用本文的文献

1
Post-selection inference for the Cox model with interval-censored data.具有区间删失数据的Cox模型的选择后推断
Scand Stat Theory Appl. 2025 Jun;52(2):710-735. doi: 10.1111/sjos.12768. Epub 2025 Feb 5.
6
Multivariate Bayesian variable selection for multi-trait genetic fine mapping.用于多性状遗传精细定位的多变量贝叶斯变量选择
J R Stat Soc Ser C Appl Stat. 2024 Oct 28;74(2):331-351. doi: 10.1093/jrsssc/qlae055. eCollection 2025 Mar.

本文引用的文献

1
Non-Concave Penalized Likelihood with NP-Dimensionality.具有NP维数的非凹惩罚似然法
IEEE Trans Inf Theory. 2011 Aug;57(8):5467-5484. doi: 10.1109/TIT.2011.2158486.
3
Penalized Composite Quasi-Likelihood for Ultrahigh-Dimensional Variable Selection.用于超高维变量选择的惩罚复合拟似然法
J R Stat Soc Series B Stat Methodol. 2011 Jun;73(3):325-349. doi: 10.1111/j.1467-9868.2010.00764.x.
5
6
Variable Selection using MM Algorithms.使用MM算法进行变量选择
Ann Stat. 2005;33(4):1617-1642. doi: 10.1214/009053605000000200.
7
Impossibility of successful classification when useful features are rare and weak.当有用特征稀少且微弱时,成功分类是不可能的。
Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8859-64. doi: 10.1073/pnas.0903931106. Epub 2009 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验